×

On the polynomial eigenvalue problem with positive operators and location of the spectral radius. (English) Zbl 0175.13701


PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] K. P. Hadeler: Eigenwerte von Operatorpolynomen. Arch. Rational Mech. Anal. 20 (1965) 72-80. · Zbl 0136.12601
[2] M. A. Krasnoselski: Положительные решения операторных уравнений. (Positive Solutions of Operator Equations.) Gostechizdat, Moscow 1962.
[3] M. G. Krejn M. A. Rutman: Линейные операторы оставлающие инвариантным конус в пространстве Банаха. (Linear operators leaving a cone invariant in a Banach space.) Uspehi Mat. Nauk 3 (1948), 3-95.
[4] I. Marek: Přibližné stanovení spektrálního poloměru kladného nerozložitelného zobrazení. (Spektralradius einer positiven unzerlegbaren Abbildung). Apl. mat. 12 (1967), 351 - 363.
[5] I. Marek: A note on \(\chi\)-positive operators. Commen. Math. Univ. Carolinae 4 (1963), 137-146. · Zbl 0201.16704
[6] I. Marek: On the approximate construction of eigenvectors corresponding to a pair of complex conjugated eigenvalues. Mat.-Fyz. časopis Sloven. Akad. Vied 14 (1964), 277-288. · Zbl 0243.65024
[7] I. Marek: Spektraleigenschaften der \(\chi\)-positiven Operatoren und Einschliessungssätze für den Spektralradius. Czechoslovak Math. J. 16 (1966), 493 - 517. · Zbl 0152.33701
[8] I. Marek: Über einen speziellen Typus der linearen Gleichungen im Hilbertschen Raume. Časopis pěst. mat. 89 (1964), 155-172. · Zbl 0187.38202
[9] I. Marek: \(u_0\)-positive operators and some of their applications. SIAM J. Appl. Math. 15 (1967), 484-494. · Zbl 0149.34901
[10] P. H. Müller: Eine neue Methode zur Behandlung nichtlinearer Eigenwertaufgaben. Math. Z. 70 (1959), 381-406. · Zbl 0083.34901
[11] I. Sawashima: On spectral properties of some positive operators. Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 55-64. · Zbl 0138.07801
[12] H. Schaefer: On the singularities of an analytic function with values in a Banach space. Arch. Math. 11 (1960), 40-43. · Zbl 0093.12402
[13] H. Schaefer: Spectral properties of positive linear transformations. Pacific J. Math. 10 (1960), 1009-1019. · Zbl 0129.08801
[14] T. Yamamoto: A computational method for the dominant root of a nonnegative irreducible matrix. Numer. Math. 8 (1966), 324-333. · Zbl 0163.38801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.