×

Approximation in systems of real-valued continuous functions. (English) Zbl 0175.14301


MSC:

46-XX Functional analysis
Full Text: DOI

References:

[1] F. W. Anderson, A class of function algebras, Canad. J. Math. 12 (1960), 353 – 362. · Zbl 0096.31801 · doi:10.4153/CJM-1960-029-3
[2] Frank W. Anderson and Robert L. Blair, Characterizations of the algebra of all real-valued continuous functions on a completely regular space, Illinois J. Math. 3 (1959), 121 – 133. · Zbl 0083.17403
[3] Richard Arens, Approximation in, and representation of, certain Banach algebras, Amer. J. Math. 71 (1949), 763 – 790. · Zbl 0034.21701 · doi:10.2307/2372363
[4] Richard Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455 – 471. · Zbl 0047.35802
[5] B. Banaschewski, On the Weierstrass-Stone approximation theorem, Fund. Math. 44 (1957), 249 – 252. · Zbl 0081.32801
[6] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. · Zbl 0033.10103
[7] N. Bourbaki, Topologie générale, Chapter III, Actualités Sci. Ind. No. 916-1143, Hermann, Paris, 1951.
[8] Barron Brainerd, \?-rings of continuous functions. I, Canad. J. Math. 11 (1959), 80 – 86. · Zbl 0089.10602 · doi:10.4153/CJM-1959-011-3
[9] R. Creighton Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95 – 104. · Zbl 0087.31502
[10] Ky Fan, Partially ordered additive groups of continuous functions, Ann. of Math. (2) 51 (1950), 409 – 427. · Zbl 0037.35102 · doi:10.2307/1969332
[11] M. Henriksen, Report of rings of continuous functions, Summer Institute on Set Theoretic Topology, Summary of Lectures and Seminars, rev. ed., Madison (1958), pp. 129-132.
[12] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras., Fund. Math. 50 (1961/1962), 73 – 94. · Zbl 0099.10101
[13] Edwin Hewitt, Certain generalizations of the Weierstrass approximation theorem, Duke Math. J. 14 (1947), 419 – 427. · Zbl 0029.30302
[14] Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45 – 99. · Zbl 0032.28603
[15] -, Remarks on the applications of set-theoretic topology to analysis, Summer Institute on Set Theoretic Topology, Summary of Lectures and Seminars, rev. ed., Madison (1958), pp. 129-132.
[16] Edwin Hewitt and Herbert S. Zuckerman, Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, Duke Math. J. 26 (1959), 305 – 324. · Zbl 0087.05802
[17] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. (2) 68 (1958), 96 – 125. · Zbl 0081.11101 · doi:10.2307/1970045
[18] Richard V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc., No. 7 (1951), 39. · Zbl 0042.34801
[19] Irving Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153 – 183. · Zbl 0034.16604 · doi:10.2307/2371662
[20] Taira Shirota, A class of topological spaces, Osaka Math. J. 4 (1952), 23 – 40. · Zbl 0047.41704
[21] Taira Shirota, On ideals in rings of continuous functions, Proc. Japan Acad. 30 (1954), 85 – 89. · Zbl 0057.09503
[22] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375 – 481. · Zbl 0017.13502
[23] M. H. Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167 – 184, 237 – 254. · doi:10.2307/3029750
[24] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. · Zbl 0025.09102
[25] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.