×

Some existence theorems of the traction boundary value problem of linearized elastostatics. (English) Zbl 0175.22108


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, S., The coerciveness problem for Integro-differential forms. J. d’Analyse Math. 6, 183–223 (1958). · Zbl 0119.32302
[2] Agmon, S., A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of partial differential equations I. Comm. Pure and Appl. Math. 12, 623–727 (1959). · Zbl 0093.10401
[3] Agmon, S., A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of partial differential equations II. Comm. Pure and Appl. Math. 17, 35–92 (1964). · Zbl 0123.28706
[4] Bramble, J. H., & L. E. Payne, Effect of error in measurement on solutions of problems in classical elasticity. J. Research Nat. Bur. Stds. Section B 67 B, 157–167 (1963). · Zbl 0114.15801
[5] Fichera, G., Linear Elliptic Differential Systems and Eigenvalue Problems. Springer Lecture Notes on Math. No. 8. Berlin-Heidelberg-New York: Springer 1965. 176 pp. · Zbl 0138.36104
[6] Friedrichs, K. O., On the boundary value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48, 441–471 (1947). · Zbl 0029.17002
[7] Hayes, M., Wave propagation and uniqueness in prestressed elastic solids. Proc. Roy. Soc. A 274, 500–506 (1963). · Zbl 0112.40501
[8] Hayes, M., On pure extension. Arch. Rational Mech. Anal. 28, 153–164 (1968). · Zbl 0155.53103
[9] Hörmander, L., Linear Partial Differential Operators. Berlin-Göttingen-Heidelberg: Springer 1963. vii+ 286 pp. · Zbl 0108.09301
[10] Kohn, J. J., & L. Nirenberg, Non-coercive boundary value problems. Comm. Pure and Appl. Math. 18, 443–492 (1965). · Zbl 0125.33302
[11] Lax, P. D., On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Comm. Pure and Appl. Math. 8, 615–633 (1955). · Zbl 0067.07502
[12] Lax, P., & N. Milgram, Parabolic Equations, pp. 167–190 of Contributions to the Theory of Partial Differential Equations. Annals of Math. Studies No. 33. Princeton University Press 1954.
[13] Lions, J. L., & E. Magenes, Problemi ai limiti non omogenei III. Annali Sc. Norm. Sup. Pisa XV, 39–101 (1961). · Zbl 0115.31401
[14] Lions, J. L., & E. Magenes, Problemi ai limiti non omogenei IV. Annali Sc. Norm. Sup. Pisa XV, 311–326 (1961).
[15] Lions, J. L., & E. Magenes, Problemi ai limiti non omogenei V. Annali Sc. Norm. Sup. Pisa XV, 1–44 (1962).
[16] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Fourth Edition. New York: Dover 1944. xviii+ 643 pp. · Zbl 0063.03651
[17] Morrey, C. B., Jr., Multiple Integrals and the Calculus of Variations. Berlin-Heidelberg-New York: Springer 1967. ix+ 506 pp.
[18] Schecter, M., General boundary value problems for partial differential equations. Comm. Pure and Appl. Math. 12, 457–486 (1959). · Zbl 0087.30204
[19] Schecte
[20] Schecter, M., On the theory of differential boundary value problems. Illinois J. Math. 7, 232–245 (1963).
[24] Sternberg, E., On St. Venant’s principle. Q. Appl. Math. 11, 393–402 (1954). · Zbl 0057.40004
[25] Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics, v. III/3 of Encyclopedia of Physics, ed. Flügge. Berlin-Heidelberg-New York: Springer 1965. viii+ 602 pp.
[26] Turteltaub, M. J., & E. Sternberg, Elastostatic uniqueness in the half-space. Arch. Rational Mech. Anal. 24, 233–242 (1967). · Zbl 0145.44905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.