×

Schreier varieties of semigroups. (English) Zbl 0175.29301


PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Brown, T. C.: On the finiteness of semigroups in whichx n =x. Proc. Cambridge Philos. Soc.60, 1028-1029 (1964). · Zbl 0134.02303 · doi:10.1017/S0305004100038482
[2] Evans, T.: A condition for a cancellation semigroup to be a group. Amer. Math. Monthly73, 1104-1106 (1966). · Zbl 0144.01401 · doi:10.2307/2314649
[3] Green, J. A., Rees, D.: On semigroups in whichx n =x. Proc. Cambridge Philos. Soc.48, 35-40 (1952). · Zbl 0046.01903 · doi:10.1017/S0305004100027341
[4] Neumann, P. M., Newman, M. F.: On Schreier varieties of groups. Math. Z.98, 196-199 (1967). · Zbl 0152.00302 · doi:10.1007/BF01112413
[5] ?, Wiegold, J.: Schreier varieties of groups. Math. Z.85, 392-400 (1964). · Zbl 0126.26901 · doi:10.1007/BF01115359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.