×

zbMATH — the first resource for mathematics

Compact holomorphically convex subsets of a Stein manifold. (English) Zbl 0175.37204

MSC:
32-XX Several complex variables and analytic spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Henri Cartan, Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles, 1953, Georges Thone, Liège; Masson & Cie, Paris, 1953, pp. 41 – 55 (French). · Zbl 0053.05301
[2] Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77 – 99 (French). · Zbl 0083.30502
[3] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[4] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. · Zbl 0141.08601
[5] A. Martineau, Les hyperfunctions de M. Sato, Séminaire Bourbaki, 13 (1961). · Zbl 0122.34902
[6] Hugo Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9 – 17. · Zbl 0113.06001 · doi:10.1002/cpa.3160160103 · doi.org
[7] Mikio Sato, Theory of hyperfunctions. II, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 387 – 437 (1960). · Zbl 0097.31404
[8] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. · Zbl 0141.30503
[9] R. O. Wells Jr., Holomorphic hulls and holomorphic convexity, Rice Univ. Studies 54 (1968), no. 4, 75 – 84. · Zbl 0177.11402
[10] R. O. Wells Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245 – 262. · Zbl 0159.37702
[11] Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713 – 717. · Zbl 0115.38405 · doi:10.2307/1970034 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.