Nitsche, Joachim A. Ein Kriterium für die Quasi-Optimalität des Titzschen Verfahrens. (German) Zbl 0175.45801 Numer. Math. 11, 346-348 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 83 Documents Keywords:numerical analysis PDFBibTeX XMLCite \textit{J. A. Nitsche}, Numer. Math. 11, 346--348 (1968; Zbl 0175.45801) Full Text: DOI EuDML References: [1] Babuska, I., M. Prager, andE. Vitasek: Numerical processes in differential equations. SNTL-Publishers of Technical Literature, Prague. London-New York-Sydney: Interscience Publishers 1966. [2] Dziskariani, A. V.: On the rate of convergence of the Bubnov-Galerkin method. Zh. vych. mat.4, No. 2, 343–348 (1964). [3] Michlin, S. G.: Zur Ritzschen Methode. Dokl. Akad. Nauk SSSR,106, No. 3, 391–394 (1956) · Zbl 0070.12106 [4] Vainikko, G.: Certain estimates for the error in the Bubnov-Galerkin method. I. Asymptotic estimates; II. Estimates of then-th approximation. Tartu Riikl. Ül. Toimetised No.150, 188–201 and 202–215 (1964). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.