×

zbMATH — the first resource for mathematics

On the computation of elementary divisors of integer matrices. (English) Zbl 1017.65037
The author describes a semi-modular algorithm which computes, given a matrix \(A\) of known rank and a prime \(p\), the multiplicities of \(p\) in the factorizations of the elementary divisors of \(A\). Numerical examples, calculated via software dveloped by the author, illustrate the theory.

MSC:
65F30 Other matrix algorithms (MSC2010)
15A21 Canonical forms, reductions, classification
68W30 Symbolic computation and algebraic computation
Software:
EDIM; GAP; Magma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system I: the user language, J. symb. comput., 24, 235-265 (see http://www.maths.usyd.edu.au:8000/u/magma/), (1997)
[2] Dixon, J.D., Exact solution of linear equations using p -adic expansions, Numer. math., 40, 137-141, (1982) · Zbl 0492.65016
[3] TheGAPGroup, GAP, http://www.gap-system.org
[4] Giesbrecht, M., Fast computation of the Smith normal form of an integer matrix, Issac’95, (1995), ACM Press, p. 110-118 · Zbl 0915.65032
[5] Havas, G.; Holt, D.F.; Rees, S., Recognizing badly presented Z-modules, Linear algebr. appl., 192, 137-164, (1993) · Zbl 0789.15008
[6] Havas, G.; Majewski, B.S., Integer matrix diagonalization, J. symb. comput., 24, 399-408, (1997) · Zbl 0880.68066
[7] Havas, G.; Majewski, B.S.; Matthews, K.R., Extended gcd and Hermite normal form algorithms via lattice basis reduction, Exp. math., 7, 125-135, (1998) · Zbl 0922.11112
[8] Havas, G.; Sterling, L.S., Integer matrices and abelian groups, Symbolic and algebraic computation, (1979), Springer Berlin, p. 431-451
[9] Lübeck, F., EDIM—elementary divisors and integer matrices, (1999), Lehrstuhl D für Mathematik (a refereed share package for GAP (1999), see http://www.gap-system.org/share/edim.html) RWTH Aachen
[10] Mathas, A., Iwahori-Hecke algebras and Schur algebras of the symmetric group, (1999), American Mathematical Society · Zbl 0940.20018
[11] Storjohann, A., A solution to the extended GCD problem with applications, Issac’97, (1997), ACM Press, p. 109-116 · Zbl 0923.11004
[12] Storjohann, A.; Labahn, G., Asymptotically fast computation of Hermite normal forms of integer matrices, Issac’96, (1996), ACM Press, p. 259-266 · Zbl 0915.65033
[13] van der Waerden, B.L., Algebra, (1967), Springer Berlin · Zbl 0192.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.