zbMATH — the first resource for mathematics

Theory of Bessel potentials. III: Potentials on regular manifolds. (English) Zbl 0176.09902

31C12 Potential theory on Riemannian manifolds and other spaces
Full Text: DOI Numdam EuDML
[1] R. ADAMS, N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. · Zbl 0185.19703
[2] N. ARONSZAJN, Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. · Zbl 0196.40803
[3] N. ARONSZAJN and E. GAGLIARDO, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. · Zbl 0195.13102
[4] N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. · Zbl 0102.32401
[5] A. P. CALDERÓN, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. · Zbl 0124.31803
[6] N. DUNFORD and J. T. SCHWARTZ, Linear operators, Vol. I, Interscience, New York, (1958). · Zbl 0084.10402
[7] K. O. FRIEDRICHS, Spektraltheorie halbbeschränkter operatoren und anwendung auf die spektralzerlegung von differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. · JFM 60.1078.01
[8] L. HÖRMANDER, Linear partial differential operators, Academic Press, New York, (1963).
[9] J. L. LIONS, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). · Zbl 0097.09501
[10] J. L. LIONS, Une construction d’espaces d’interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. · Zbl 0118.10702
[11] S. B. MYERS and N. E. STEENROD, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. · JFM 65.1415.03
[12] R. S. PALAIS, On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. · Zbl 0084.37405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.