×

zbMATH — the first resource for mathematics

On the finite element method. (English) Zbl 0176.16001

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aubin, J.-P.: Approximation des espaces de distributions et des opérateurs differentiels. Bull. Soc. Math. France, Mémoire12 (1967). · Zbl 0157.21901
[2] Berezin, I. S., andN. P. Židkov: Computing methods, vol. I. English translation. Oxford: Pergamon Press 1965.
[3] Birkhoff, G., M. H. Schultz, andR. S. Varga: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math.11, 232–256 (1968). · Zbl 0159.20904 · doi:10.1007/BF02161845
[4] Céa, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble)14, 345–444 (1964). · Zbl 0127.08003
[5] Ciarlet, P. G.: Variational methods for non-linear boundary value problems. Thesis, Case Institute of Technology, June 1966.
[6] —-M. H. Schultz, andR. S. Varga: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[7] Clough, R. W., andJ. L. Tocher: Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. Matrix Methods in Struct. Mech., Air Force Inst. of Tech., Dayton, Ohio, Oct. 1965.
[8] Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc.49, 1–23 (1943). · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[9] Fraeijs de Veubeke, B.: Displacement and equilibrium models in the finite element method, chap. 9 of Stress analysis, ed. O. C. Zienkiewicz and G. S. Holister. London: Wiley 1965.
[10] —-: A conforming finite element for plate bending. Int. J. Solids Structures4, 95–108 (1968). · Zbl 0168.22602 · doi:10.1016/0020-7683(68)90035-8
[11] Friedrichs, K.: Die Randwert- und Eigenwertprobleme aus der Theorie der elastischen Platten. Anwendung der direkten Methoden der Variationsrechnung. Math. Annalen98, 205–247 (1928). · JFM 53.0469.03 · doi:10.1007/BF01451590
[12] Friedrichs, K. O., andH. B. Keller: A finite difference scheme for generalized Neumann problems. Numerical solution of partial differential equations. Proceedings of a Symposium held at the University of Maryland, ed. byJ. H. Bramble. New York: Academic Press 1966. · Zbl 0147.13901
[13] Michlin, S. G., andH. L. Smolickii: Approximate methods for solution of differential and integral equations. English translation. New York: Elsevier 1967.
[14] Oganesjan, L. A.: Convergence of difference schemes in case of improved approximation of the boundary. [In Russian.] Ž. Vyčisl. Mat. i Mat. Fiz.6, 1029–1042 (1966). · Zbl 0176.15604
[15] Smirnov, V. I.: A course in higher mathematics, vol. V. English translation. Oxford: Pergamon Press 1964. · Zbl 0121.25904
[16] Varga, R. S.: Hermite interpolation-type Ritz methods for two-point boundary value problems. Numerical solution of partial differential equations. Proceedings of a Symposium held at the University of Maryland, ed. byJ. H. Bramble. New York: Academic Press 1966. · Zbl 0161.35701
[17] Zienkiewicz, O. C.: The finite element method in structural and continuum mechanics. London: McGraw Hill 1967. · Zbl 0189.24902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.