×

zbMATH — the first resource for mathematics

Laplace \(L_ 2\)-transform of distributions. (English) Zbl 0176.42302
MSC:
44A10 Laplace transform
46F12 Integral transforms in distribution spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] L. Schwartz: Théorie des distributions. vols I, II, Hermann, Paris 1950, 1951. · Zbl 0037.07301
[2] L. Schwartz: Transformation de Laplace des distributions. Medd. Lunds Univ. Mat. Seminarium, tome supplémentaire, Lund 1952, pp. 196-206. · Zbl 0047.34903
[3] L. Schwartz: Méthodes mathématiques pour les sciences physiques. Hermann, Paris 1961. Гуд3д3іап тгапд3. Математические методы для физических наук, Москва 1965. · Zbl 0101.41301
[4] A. H. Zemanian: The distributional Laplace and Mellin transformations. J. SIAM AppL Math., Vol. 14, No 1, January 1966, pp. 41-59. · Zbl 0147.11903
[5] A. H. Zemanian: Inversion formulas for the distributional Laplace transformation. J. SIAM Appl. Math., Vol. 14, No 1, January 1966, pp. 159-166. · Zbl 0147.11904
[6] Ditkin, Kuznecov: Справочник по операционному исчислению, Москва, Ленинград. 1954. Czech trans. Příručka operátorového počtu, Praha 1954.
[7] Ditkin, Prudnikov: Операционное исчисление по двум переменным и его приложения. Москва 1958. · Zbl 0126.31403
[8] S. Bochner K. Chandrasekharan: Fourier Transforms. Princeton 1949. · Zbl 0065.34101
[9] J. Nečas: Une note sur la propriété caractéristique de la transformée de Laplace d’une fonction et sur certaines espaces de Hubert dont la somme est l’ensemble des transformés de Laplace de distributions. Čas. pro pěst. mat., 83 (1958), pp. 160-170. · Zbl 0089.31202
[10] J. Kučera: Multiple Laplace integral. Czech. Math. J. 18 (93), (1968), 666-674. · Zbl 0167.41602
[11] J. Kučera: Fourier L_2-transform of distributions. Czech. Math. J. 19 (94), (1969), 143-153. · Zbl 0176.42301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.