×

zbMATH — the first resource for mathematics

Series and parallel addition of matrices. (English) Zbl 0177.04904

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ben-Israel, A; Charnes, A, Contributions to the theory of generalized inverses, J. soc. indust. appl. math., 11, 667-699, (1963) · Zbl 0116.32202
[2] Birkhoff, G, Lattice theory, () · Zbl 0126.03801
[3] Duffin, R.J, Elementary operations which generate network matrices, (), 335-339
[4] Duffin, R.J; Hazony, D; Morrison, N, Network synthesis through hybrid matrices, SIAM J. appl. math., 14, 390-413, (1966) · Zbl 0161.13303
[5] Erickson, K.E, A new operation for analyzing series-parallel networks, IEEE trans. circuit theory, CT-6, 124-126, (1959)
[6] Fuchs, L, Partially ordered algebraic systems, (1963), Pergamon Press New York · Zbl 0137.02001
[7] Halmos, P.R, Finite dimensional vector spaces, (1958), Van Nostrand Princeton, New Jersey · Zbl 0107.01404
[8] Halmos, P.R, ()
[9] Hardy, G; Littlewood, J; Polya, G, Inequalities, (1934), Cambridge Univ. Press London and New York · JFM 60.0169.01
[10] Huelsman, L, Circuits, matrices, and linear vector spaces, (1963), McGraw-Hill New York
[11] Lehman, A, Problem 60-5-A resistor network inequality, SIAM rev., 4, 150-155, (1962)
[12] Lewis, T; Newman, T, Pseudo-inverses of positive semidefinite matrices, SIAM J. appl. math., 16, 701-703, (1968) · Zbl 0164.03102
[13] Penrose, R, A generalized inverse for matrices, (), 406-413 · Zbl 0065.24603
[14] Tucker, A.W, A combinatorial equivalence of matrices, (), 129-140 · Zbl 0096.00701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.