Series and parallel addition of matrices. (English) Zbl 0177.04904

Full Text: DOI


[1] Ben-Israel, A.; Charnes, A., Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math., 11, 667-699 (1963) · Zbl 0116.32202
[2] Birkhoff, G., Lattice theory, (Amer. Math. Soc. Colloquium Publications XXV (1966)) · Zbl 0126.03801
[3] Duffin, R. J., Elementary operations which generate network matrices, (Proc. Am. Math. Soc., 6 (1955)), 335-339
[4] Duffin, R. J.; Hazony, D.; Morrison, N., Network synthesis through hybrid matrices, SIAM J. Appl. Math., 14, 390-413 (1966) · Zbl 0161.13303
[5] Erickson, K. E., A new operation for analyzing series-parallel networks, IEEE Trans. Circuit Theory, CT-6, 124-126 (1959)
[6] Fuchs, L., Partially Ordered Algebraic Systems (1963), Pergamon Press: Pergamon Press New York · Zbl 0137.02001
[7] Halmos, P. R., Finite Dimensional Vector Spaces (1958), Van Nostrand: Van Nostrand Princeton, New Jersey · Zbl 0107.01404
[8] Halmos, P. R., (A Hilbert Space Problem Book (1967), Van Nostrand: Van Nostrand Princeton, New Jersey) · Zbl 0144.38704
[9] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1934), Cambridge Univ. Press: Cambridge Univ. Press London and New York
[10] Huelsman, L., Circuits, Matrices, and Linear Vector Spaces (1963), McGraw-Hill: McGraw-Hill New York
[11] Lehman, A., Problem 60-5-A resistor network inequality, SIAM Rev., 4, 150-155 (1962)
[12] Lewis, T.; Newman, T., Pseudo-inverses of positive semidefinite matrices, SIAM J. Appl. Math., 16, 701-703 (1968) · Zbl 0164.03102
[13] Penrose, R., A generalized inverse for matrices, (Proc. Cambridge Phil. Soc., 51 (1955)), 406-413 · Zbl 0065.24603
[14] Tucker, A. W., A combinatorial equivalence of matrices, (Proceedings of Symposia in Applied Mathematics. Proceedings of Symposia in Applied Mathematics, Combinatorial Analysis, vol. X (1960), Amer. Math. Soc), 129-140 · Zbl 0096.00701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.