×

About the value distribution of holomorphic maps into the projective space. (English) Zbl 0177.11302


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bott, R. andChern, S. S., Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections.Acta Math., 114 (1965), 71–112. · Zbl 0148.31906
[2] Chern, S. S., The integrated form of the first main theorem for complex analytic mappings in several complex variables.Ann. of Math. (2), 71 (1960), 536–551. · Zbl 0142.04802
[3] Hirschfelder, J., The first main theorem of value distribution in several variables. Notre Dame thesis (1968), pp. 93. to be published inInvent. Math. · Zbl 0175.37103
[4] Hodge, W. V. D. andPedoe, D.,Methods of Algebraic Geometry II. Cambridge Univ. Press (1952). · Zbl 0048.14502
[5] Remmert, R., Holomorphe und meromorphe Abbildungen komplexer Räume.Math. Ann., 33 (1957), 338–370. · Zbl 0079.10201
[6] Stoll, W., Mehrfache Integrale auf komplexen Mannigfaltigkeiten.Math. Z., 57 (1952/53), 116–154. · Zbl 0047.32401
[7] –, Die beiden Hauptsätze der Wertverteilungstheorie bei Funktionen mehrer komplexer Veränderlichen. IActa Math., 90 (1953), 1–115, and IIActa Math. 92 (1954), 55–169. · Zbl 0058.30705
[8] –, The multiplicity of a homomorphic map.Invent. Math., 2 (1966), 15–58. · Zbl 0158.08403
[9] –, The continuity of the fiber integral.Math. Z., 95 (1967), 87–138. · Zbl 0148.31904
[10] –, A general first main theorem of value distribution.Acta Math., 118 (1967), 111–191. · Zbl 0148.31905
[11] Stoll, W., Value distribution of holomorphic maps into Kaehler manifolds. To be published. · Zbl 0195.36702
[12] Thie, P., The Lelong number of a point of a complex analytic set.Math. Ann., 172 (1967), 269–312. · Zbl 0158.32804
[13] Wu, H., Remarks on the first main theorem in equidistribution theory I.J. Diff. Geom., 2 (1968), 197–202. · Zbl 0164.38103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.