Demyanov, V. F. Algorithms for some minimax problems. (English) Zbl 0177.23104 J. Comput. Syst. Sci. 2, 342-380 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 34 Documents Keywords:operations research × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Dem’yanov, V. F., On the solution of certain minimax problems, I, II, Kybernetica, 3, 62-66 (1967) · Zbl 0168.40503 [2] Frank, M.; Wolfe, P., An algorithm for quadratic programming, Naval Res. Logist. Quart., 3, 95-110 (1956) [3] Beale, E. M.L., On quadratic programming, Naval Res. Logist. Quart., 6, 227-243 (1959) [4] Dantzig, G. B., (Linear Programming and Extensions (1963), Princeton University Press: Princeton University Press Princeton) · Zbl 0108.33103 [5] Zontendijk, G., (Methods of Feasible Directions (1960), Elsevier: Elsevier Amsterdam) · Zbl 0097.35408 [6] Zuchovitskiy, S. I.; Polyak, G. A.; Primak, M. E., An algorithm for solving convex chebyshev approximation Problems, Dokl. Akad. Nauk SSSR, 151, 27-30 (1963), English transl. Soviet Math.4, 901-904 (1963) · Zbl 0143.17801 [7] Zuchovitskiy, S. I.; Polyak, G. A.; Primak, M. E., A Numerical Method for Solving a Convex Programming Problem in Hilbert Space, Dokl. Akad. Nauk SSSR., 163, 282-284 (1965), English transl. Soviet Math.6, 903-905 (1965) · Zbl 0196.51301 [8] Zontendijk, G., Nonlinear programming: a numerical survey, SIAM J. Control., 4, 194-210 (1966) · Zbl 0146.13303 [9] Kelley, J. E., The cutting-plane method for solving convex programs, J. Soc. Indust. Appl. Math., 8, 703-712 (1960) · Zbl 0098.12104 [10] Rosen, J. B., The gradient projection method for nonlinear programming, I, J. Soc. Indust. Appl. Math., 8, 181-217 (1960) · Zbl 0099.36405 [11] Wolfe, P., (Graves, R. L.; Wolfe, P., Methods of Nonlinear Programming, Recent Advances in Mathematical Programming (1963), McGraw-Hill: McGraw-Hill New York), 67-86 · Zbl 0225.90042 [12] Levitin, E. S.; Poliak, B. T., Methods for constrained minimization, Zh. Vychisl. Mat. i Mat. Fiz., 6, 787-823 (1966) · Zbl 0184.38902 [13] Kirin, N. E., On programming optimization of linear systems in the presence of constraints on phase coordinates, (Proceedings of III All-Union Conference on Control (Technical Cybernetics), Optimal Systems and Statistics Methods (1967), Nauka: Nauka Moscow), 92-98 [14] Dem’yanov, V. F.; Rubinov, A. M., Minimizing a smooth convex functional on a convex set, Vestnik Leningrad Univ., 19, 5-17 (1964) · Zbl 0145.40002 [15] Dem’yanov, V. F.; Rubinov, A. M., On necessary conditions for an extremum, Economika i Mathematicheskie Metody., 2, 406-417 (1966) [16] Dubovitzkii, A. Ya.; Milintin, A. A., Extremum problems with constraints, Zh. Vychsl. Mat. i Mat. Fiz., 5, 395-453 (1965) [17] Neustadt, L. W., An abstract variational theory with applications to a broad class of optimization problems, I and II, SIAM J. Control., 5, 90-137 (1967) · Zbl 0172.12903 [18] Pshenichniy, B. N., A dual method in extremal problems I and II, Kybernetica., 1, no. 4, 64-69 (1965) · Zbl 0161.29303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.