zbMATH — the first resource for mathematics

Some properties of the negative hypergeometric distribution and its limit distribution. (English) Zbl 0177.47501

Full Text: DOI EuDML
[1] Bardwell, G. E. andE. L. Crow (1964): ”A two-parameter family of hyper-Poisson distributions.” J. Amer. Stat. Assoc.59, 133–141. · Zbl 0137.13301
[2] Bartholomew, D. J. (1965): ”A comparison of some Bayesian and frequentist inferences.” Biometrika52, 19–35. · Zbl 0152.17603
[3] Chapman, D. G. andH. Robbins (1951): ”Minimum variance estimation without regularity assumptions.” Ann. Math. Statist.22, 581–586. · Zbl 0044.34302
[4] Clopper, C. I., andE. S. Pearson (1934): ”The use of confidence or fiducial limits illustrated in the case of the binomial.” Biometrika26, 404–413. · JFM 60.1175.02
[5] Cramer, H. (1946): Mathematical methods of statistics. Princeton. · Zbl 0060.30513
[6] Fisher, R. A. (1935): ”The logic of inductive inference.” J. R. Statist. Soc.98, 39–54. · JFM 61.1308.06
[7] Fisher, R. A. (1956): Statistical methods and scientific inference. Oliver and Boyd, Edinburgh. · Zbl 0070.36903
[8] Katz, L. (1946): ”On the class of functions defined by the difference equation (x+1)f(x+1)=(a+b x)f(x),” (Abstract). Ann. Math. Statist.17, 501.
[9] Keynes, J. M. (1921): A treatise on probability. Macmillan, London. · JFM 48.0615.08
[10] Lindley, D. V. (1958): ”Fiducial distributions and Bayes’ theorem.” J. R. Statist. Soc. B20, 102–107. · Zbl 0085.35503
[11] Pratt, J. W. (1965): ”Bayesian interpretation of standard inference statements.” J. R. Statist. Soc. B27, 169–192. · Zbl 0142.15203
[12] Stevens, W. L. (1950): ”Fiducial limits for the parameter of a discontinuous distribution.” Biometrika37, 117–129. · Zbl 0037.36701
[13] Särndal, C. E. (1965): ”Derivation of a class of frequency distributions via Bayes’ theorem.” J. R. Statist. Soc. B27, 290–300. · Zbl 0141.34901
[14] Thatcher, A. R. (1964): ”Relationships between Bayesian and confidence limits for predictions.” J. R. Statist. Soc. B26, 176–192. · Zbl 0126.34403
[15] Wilks, S. S. (1961): Mathematical statistics. Wiley, New York. · Zbl 0060.29502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.