×

Translation-invariant cones of functions on semi-simple Lie groups. (English) Zbl 0178.16901


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97 – 205 (French). · Zbl 0074.10303
[2] Gustave Choquet, Le théorème de représentation intégrale dans les ensembles convexes compacts, Ann. Inst. Fourier Grenoble 10 (1960), 333 – 344 (French). · Zbl 0096.08201
[3] G. Choquet et J. Deny, Sur l’équation de convolution \mu = \mu * \sigma , C. R. Acad. Sci. Paris 250 (1960), 799-801. · Zbl 0093.12802
[4] N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.
[5] E. B. Dynkin, Non-negative eigenfunctions of the Laplace-Beltrami operator and Brownian motion in certain symmetric spaces, Dokl. Akad. Nauk SSSR 141 (1961), 288 – 291 (Russian). · Zbl 0116.36106
[6] Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335 – 386. · Zbl 0192.12704
[7] I. M. Gel\(^{\prime}\)fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 5 – 8 (Russian).
[8] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[9] L. H. Loomis, Unique direct integral decompositions on convex sets, Amer. J. Math. 84 (1962), 509 – 526. · Zbl 0124.32101
[10] Calvin C. Moore, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201 – 218. · Zbl 0156.03202
[11] Séminaire Sophus Lie, Théorie des algèbres de Lie, École Normale Supérieure 1954/1955.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.