zbMATH — the first resource for mathematics

Mesure invariante sur les classes recurrentes des processus de Markov. (French) Zbl 0178.20302

Full Text: DOI
[1] Azema, J., M. Kaplan-Duflo et D. Revuz: Recurrence fine des processus de Markov. Ann. Inst. Henri Poincare II, No. 3, 185-220 (1966). · Zbl 0182.51103
[2] Brelot, M., G. Choquet et J. Deny: Séminaire de Théorie du Potentiel. 5éme année 1961.
[3] Chung, K. L.: Markov chains with stationary transition probabilities. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0092.34304
[4] Dunford, N., et J. Schwarz: Linear operators. New York: Interscience Publishers 1958. · Zbl 0088.32102
[5] Dynkin, E. B.: Markov processes. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0132.37901
[6] Harris, T. E.: The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Sympos. math. Statist. Probability II. (1956). · Zbl 0072.35201
[7] Hunt, G. A.: Markov processes and potentials. Illinois J. Math. 2, 151-213 (1958).
[8] ? La théorie du potentiel et les processus récurrents. Ann. Inst. Fourier 15, 1-12 (1965).
[9] Ito, K., et H. P. McKean: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0127.09503
[10] Meyer, P. A.: Fonctionnelles multiplicatives et additives de Markov. Ann. Inst. Fourier 12, 125-230 (1962). · Zbl 0138.40802
[11] Nagasawa, M., et K. Sato: Some theorems on time change and killing of Markov processes. Kodaï math. Sem. Reports 15, 195-219 (1963). · Zbl 0123.35202
[12] Neveu, J.: Bases mathëmatiques du calcul des probabilités. Paris: Masson 1963.
[13] ? Théorie ergodique. Cours à la Faculté des Sciences de Paris (1965).
[14] Widder, D. v.: Laplace transform. Princeton: Princeton University Press 1946. · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.