×

Mesure invariante sur les classes recurrentes des processus de Markov. (French) Zbl 0178.20302


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Azema, J.; Kaplan-Duflo, M.; Revuz, D., Recurrence fine des processus de Markov, Ann. Inst. Henri Poincare, II, No. 3, 185-220 (1966) · Zbl 0182.51103
[2] Brelot, M., G. Choquet et J. Deny: Séminaire de Théorie du Potentiel. 5éme année 1961. · Zbl 0100.14001
[3] Chung, K. L., Markov chains with stationary transition probabilities (1960), Berlin-Göttingen-Heidelberg: Springer, Berlin-Göttingen-Heidelberg · Zbl 0092.34304
[4] Dunford, N.; Schwarz, J., Linear operators (1958), New York: Interscience Publishers, New York
[5] Dynkin, E. B., Markov processes (1965), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York
[6] Harris, T. E.: The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Sympos. math. Statist. Probability II. (1956). · Zbl 0072.35201
[7] Hunt, G. A., Markov processes and potentials, Illinois J. Math., 2, 151-213 (1958)
[8] Hunt, G. A., La théorie du potentiel et les processus récurrents, Ann. Inst. Fourier, 15, 1-12 (1965) · Zbl 0141.15602
[9] Ito, K.; McKean, H. P., Diffusion processes and their sample paths (1965), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0127.09503
[10] Meyer, P. A., Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier, 12, 125-230 (1962) · Zbl 0138.40802
[11] Nagasawa, M.; Sato, K., Some theorems on time change and killing of Markov processes, Kodaï math. Sem. Reports, 15, 195-219 (1963) · Zbl 0123.35202
[12] Neveu, J., Bases mathëmatiques du calcul des probabilités (1963), Paris: Masson, Paris · Zbl 0203.49901
[13] — Théorie ergodique. Cours à la Faculté des Sciences de Paris (1965).
[14] Widder, D. v., Laplace transform (1946), Princeton: Princeton University Press, Princeton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.