Mackey, G. W. Ergodic theory and virtual groups. (English) Zbl 0178.38802 Math. Ann. 166, 187-207 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 92 Documents Keywords:differentiation and integration, measure theory PDF BibTeX XML Cite \textit{G. W. Mackey}, Math. Ann. 166, 187--207 (1966; Zbl 0178.38802) Full Text: DOI EuDML OpenURL References: [1] Ambrose, W.: Representation of ergodic flows. Ann. Math.42, 723-739 (1941). · Zbl 0025.26901 [2] Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J.3, 83-89 (1951). · Zbl 0043.11203 [3] Effros, E.: Transformation groups andC* algebras. Ann. Math.81, 38-55 (1965). · Zbl 0152.33203 [4] Halmos, P. R.: Invariant measures. Ann. Math.48, 735-754 (1947). · Zbl 0029.35202 [5] Kakutani, S.: Induced measure preserving transformations. Proc. Imp. Acad. Tokyo19, 635-641 (1943). · Zbl 0060.27406 [6] Mackey, G. W.: Induced representations of locally compact groups. I. Ann. Math.55, 101-139 (1952). · Zbl 0046.11601 [7] ?? Borel structures in groups and their duals. Trans. Am. Math. Soc.85, 134-165 (1957). · Zbl 0082.11201 [8] ?? Unitary representations of group extensions I. Acta Math.99, 265-311 (1958). · Zbl 0082.11301 [9] ?? Point realizations of transformation groups. Illinois J. Math.6, 327-335 (1962). · Zbl 0178.17203 [10] ?? Infinite dimensional group representations. Bull. Am. Math. Soc.69, 628-686 (1963). · Zbl 0136.11502 [11] ?? Ergodic theory, group theory, and differential geometry. Proc. Nat. Acad. Sci. U.S.50, 1184-1191 (1963). · Zbl 0178.38801 [12] Weil, A.: L’integration dans les groupes topologiques et ses applications. Actual. Sci. Ind. no. 869. Paris: Hermann et Cie. 1940. · Zbl 0063.08195 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.