×

zbMATH — the first resource for mathematics

Rélations de domination entre opérateurs différentieles. (French) Zbl 0178.50201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Gårding,Cauchy problem for hyperbolic equations. Spring quarters 1957, Univ. of Chicago.
[2] L. Hörmander, Thèse,Acta Math., 94 (1955), 161–248. · Zbl 0067.32201 · doi:10.1007/BF02392492
[3] L. Hörmander,Uniqueness in Cauchy Problems. Mimeograph of the University of Stockholm, 1958.
[4] J. L. Lions, Thèse,Acta Math., 94 (1955), 13–153. · Zbl 0068.30902 · doi:10.1007/BF02392490
[5] J. L. Lions,Boundary value problems. Univ. of Kansas, 1957.
[6] –,C. R. Acad. Sci Paris, 242 (1956), 3028–3030.
[7] L. Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients.Comm. Pure Appl. Math., X, No. 1 (1957), 89–105. · Zbl 0077.09402 · doi:10.1002/cpa.3160100104
[8] L. Schwartz,Théorie des distributions, Paris, Hermann, 1950. · Zbl 0037.07301
[9] L. Schwartz, Séminaire, Inst. H. Poincaré, 1953–1954.
[10] L. Schwartz, Distributions à valeurs vectorielles.Annales de l’Institut Fourier, 1958. · Zbl 0089.09801
[11] –, Sur les correspondances vectorielles. –, 245 (1957), 1200–1203. · Zbl 0078.28801
[12] –, Sur les correspondances vectorielles. –, 245 (1957), 1288–1291. · Zbl 0082.09302
[13] –, Domination et problèmes aux limites de type mixte. –, 245, 1957, 2454–2457. · Zbl 0079.33202
[14] –, Domination et opérateurs hyperboliques. –, 246 (1958), 680–683. · Zbl 0080.30404
[15] –, Domination et opérateurs paraboliques. –, 246 (1958). 867–870. · Zbl 0080.30405
[16] –, Solution élémentaire d’équations aux dérivées partielles dépendant d’un paramètre. –, 242 (1956), 1250–1252. · Zbl 0071.09001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.