×

zbMATH — the first resource for mathematics

A construction of Markov processes by piecing out. (English) Zbl 0178.53401

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Courrege, P., and P. Priouret: Temps d’arret d’une fonction aleatoire: proprietes de decomposition. C.R. Acad. Sc. Paris, 259, 3933-3935 (1964). · Zbl 0134.34703
[2] Dynkin, E. B.: Markov Processes. Springer (1965). · Zbl 0132.37901
[3] Feller, W.: On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. Math., 65, 527-570 (1957). JSTOR: · Zbl 0084.35503
[4] Galmariono, A. R.: A test for Markov times. Rev. Un. Mat. Argentina, 21, 173-178 (1963). · Zbl 0119.14703
[5] Ikeda, N., M. Nagasawa, and S. Watanabe: On branching Markov processes. Proc. Japan Acad., 41, 816-821 (1965). · Zbl 0224.60038
[6] Ikeda, N., M. Nagasawa, and S. Watanabe: Fundamental equations of branching Markov processes. Proc. Japan Acad., 42, 252-257 (1966). · Zbl 0154.42701
[7] Ionescu Tulcea, C: Mesures dans les espaces produits. Atti Acad. Naz Lincei Rend., 7 (1949). · Zbl 0035.15203
[8] Kunita, H.: Applications of Martin boundaries to instantaneous return Markov process over a denumerable space. Jour. Math. Soc. Japan, 14, 66-100 (1962). · Zbl 0119.34703
[9] Loe>e, M.: Probability Theory (Third edition) van Norstrand (1963).
[10] Meyer, P. A.: A decomposition theorem for supermartingales. 111. Jour. Math., 6, 193-205 (1962); 7, 1-17 (1963). · Zbl 0133.40304
[11] Volkonsky, V. A.: Additive functionals of Markov processes. Trudy Moskov Mat. Obshc, 9, 143-189 (1960). · Zbl 0178.53404
[12] Watanabe, T.: A remark on the strong Markov property. Mem. Fac. Sci. Kyushu Univ. Ser. A, Math., 17, 176-180 (1963). · Zbl 0144.40204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.