×

zbMATH — the first resource for mathematics

Measurable multifunctions, selectors, and Filippov’s implicit functions lemma. (English) Zbl 0179.08303

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] {\scM. Jacobs}. Measurable multivalued mappings and Lusin’s theorem. Trans. Amer. Math. Soc. (to appear). · Zbl 0169.06801
[2] Castaing, C, Sur LES multi-applications mesurables, Rev. français informat. recherche opérat., No. 1, 91-126, (1967) · Zbl 0153.08501
[3] Bourbaki, N, “integration.” livre VI, () · Zbl 0189.14201
[4] Jacobs, M, Remarks on some recent extensions of Filippov’s implicit functions lemma, SIAM J. control, 5, 622-627, (1967) · Zbl 0189.16001
[5] Bourbaki, N, “general topology”, part 2, (1966), Addison-Wesley Reading · Zbl 0145.19302
[6] Berge, C, Topological spaces, (1963), Macmillan New York · Zbl 0114.38602
[7] C. Himmelberg and F. Van Vleck. Some selection theorems for measurable functions. Canad. J. Math. (to appear). · Zbl 0202.33803
[8] McShane, E; Botts, T, Real analysis, (1959), Van Nostrand Princeton, New Jersey
[9] Cesari, L; Cesari, L, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II, Trans. amer. math. soc., Trans. amer. math. soc., 124, 413-429, (1966) · Zbl 0145.12501
[10] Castaing, C, Sur un théorème de représentation intégrale lié à la comparaison des mesures, C. R. acad. sci. Paris, 264, 1059-1062, (1967) · Zbl 0154.15702
[11] Kuratowski, K; Ryll-Nardzewski, C, A general theorem on selectors, Bull. acad. polon. sci. ser. sci. math. astronom. phys., 13, 397-403, (1965) · Zbl 0152.21403
[12] Michael, E, Selected selection theorems, Amer. math. monthly, 63, 233-238, (1956) · Zbl 0070.39502
[13] Cudia, D, Rotundity, (), 73-97 · Zbl 0141.11901
[14] Wilansky, A, Functional analysis, (1964), Blaisdell New York · Zbl 0136.10603
[15] Dunford, N; Schwartz, J, “linear operators.” part I, (1966), Wiley (Interscience) New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.