Flux in axiomatic potential theory. I: Cohomology. (English) Zbl 0179.15203

Full Text: DOI EuDML


[1] Bauer, H.: Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics22. Berlin-Heidelberg-New York: Springer 1966.
[2] Boboc, N., C. Constantinescu, and A. Cornea: Axiomatic theory of harmonic functions: Nonnegative superharmonic functions. Ann. Inst. Fourier15, 283-312 (1965). · Zbl 0139.06604
[3] Bredon, G. E.: Sheaf theory. New York: McGraw-Hill 1967. · Zbl 0158.20505
[4] Brelot, M.: Lectures on potential theory. Bombay: Tata Institute 1960. · Zbl 0098.06903
[5] Dowker, C. H.: Lectures on sheaf theory. Bombay: Tata Institute 1957.
[6] Dunford, N., and J. T. Schwartz: Linear operators, I. New York: Interscience 1958.
[7] Gunning, R. C.: Lectures on Riemann surfaces. Princeton: Princeton University Press 1966. · Zbl 0175.36801
[8] ?, and H. Rossi: Analytic functions of several complex variables. Englewood Cliffs: Prentice-Hall 1965. · Zbl 0141.08601
[9] Hervé, R.-M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier12, 415-571 (1962) · Zbl 0101.08103
[10] Loeb, P. A.: An axiomatic treatment of pairs of elliptic differential equations. Ann. Inst. Fourier16, 167-208 (1966). · Zbl 0172.15101
[11] Maeda, F.-Y.: Axiomatic treatment of full-superharmonic functions. J. Sci. Hiroshima Univ. Ser. A-130, 197-215 (1966). · Zbl 0168.09702
[12] Meyer, P. A.: Brelot’s axiomatic theory of the Dirichlet problem and Hunt’s theory. Ann. Inst. Fourier13, 357-372 (1963). · Zbl 0116.30404
[13] Rodin, B., and L. Sario: Principal functions. Princeton: Van Nostrand 1968.
[14] Schaefer, H.: Topological vector spaces. New York: Macmillan 1966. · Zbl 0141.30503
[15] ?: Invariant ideals of positive operators inC(X), I. Illinois J. Math.11, 703-715 (1967). · Zbl 0168.11801
[16] Walsh, B., and P. A. Loeb: Nuclearity in axiomatic potential theory. Bull. Amer. Math. Soc.72, 685-689 (1966). · Zbl 0144.15503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.