Gordon, Y. On p-absolutely summing constants of Banach spaces. (English) Zbl 0179.17502 Isr. J. Math. 7, 151-163 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 24 Documents Keywords:functional analysis PDFBibTeX XMLCite \textit{Y. Gordon}, Isr. J. Math. 7, 151--163 (1969; Zbl 0179.17502) Full Text: DOI References: [1] Day, M. M., Normed linear spaces (1958), Berlin: Springer-Verlag, Berlin · Zbl 0082.10603 [2] Dvoretzky, A.; Rogers, C. A., Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci., 36, 192-197 (1950) · Zbl 0036.36303 · doi:10.1073/pnas.36.3.192 [3] Gordon, Y., On the projection and Macphail constants of l_n^p spaces, Israel J. Math., 6, 295-302 (1968) · Zbl 0182.45202 · doi:10.1007/BF02760261 [4] Grünbaum, B., Projection constants, Trans. Amer. Math. Soc., 95, 451-465 (1960) · Zbl 0095.09002 · doi:10.2307/1993567 [5] John, F., Extremum problems with inequalities as subsidiary conditions, Courant Anniversary volume, 187-204 (1948), New York: Interscience, New York · Zbl 0034.10503 [6] Lindenstrauss, J.; Pelczyńsky, A., Absolutely summing operators in ℒ_p spaces and their applications, Studia Math., 29, 275-326 (1968) · Zbl 0183.40501 [7] Pietsch, A., Absolut p-summierende Abbildungen in normierten Räumen, Studia Math., 28, 333-353 (1967) · Zbl 0156.37903 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.