×

zbMATH — the first resource for mathematics

Least squares, singular values and matrix approximations. (English) Zbl 0179.21403

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] C. Eckart, G. Young: The approximation of one matrix by another of lower rank. Psychometrika, 1 (1936), pp. 211-218. · JFM 62.1075.02
[2] K. Fan, A. Hoffman: Some metric inequalities in the space of matrices. Proc. Anier. Math. Soc., 6 (1955), pp. 111-116. · Zbl 0064.01402
[3] J. Francis: The QR transformation. A unitary analogue to the LR transformation. Comput. J., 4 (1961, 1962), pp. 265-271. · Zbl 0104.34304
[4] G. Golub, W. Kahan: Calculating the singular values and pseudoinverse of a matrix. J. SIAM Numer. Anal. Ser. B, 2 (1965), pp. 205-224. · Zbl 0194.18201
[5] B. Green: The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17 (1952), pp. 429-440. · Zbl 0049.37601
[6] C. Lanczos: Linear Differential Operators. Van Nostrand, London, 1961, Chap. 3. · Zbl 0111.08305
[7] L. Mirsky: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford (2), 11 (1960), pp. 50-59. · Zbl 0105.01101
[8] R. Penrose: A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51 (1955), pp. 406-413. · Zbl 0065.24603
[9] P. Schönemann: A generalized solution of the orthogonal procrustes problem. Psychometrika, 31 (1966), pp. 1-10. · Zbl 0147.19401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.