zbMATH — the first resource for mathematics

Deformations and liftings of finite, commutative group schemes. (English) Zbl 0179.49901

PDF BibTeX Cite
Full Text: DOI EuDML
[1] Cartier, P.: Groupes algébriques et groupes formels. Coll. CBRM, Brussels 1962, 87-111. · Zbl 0173.49001
[2] Demazure, M., et A. Grothendieck: Schémas en groupes. Sém. géom. algébrique, IHES, 1963-1964. Referred to as SGAD.
[3] Grothendieck, A., et J. Dieudonné: Éléments de géométrie algébrique. Publ. Math., IHES. Referred to as EGA.
[4] Grothendieck, A.: Séminaire de géométrie algébrique. IHES, 1960. Referred to as SGA.
[5] Lazard, M.: Lois de groupes et analyseurs. Ann. Sc. Éc. norm. sup.72, 299-400 (1955). · Zbl 0068.02702
[6] ?: La non-existence des groupes de Lie formels non abéliens à un paramètre. C. R. Acad. Sci.239, 942-945 (1954). · Zbl 0055.25602
[7] Lazard, M.: Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. France83, 251-274 (1955). · Zbl 0068.25703
[8] Lubin, J., and J. Tate: Formal moduli for one-parameter Lie groups. Bull. Soc. Math. France94, 49-60 (1966). · Zbl 0156.04105
[9] Mumford, D.: Lectures on curves on an algebraic surface (lecture notes Harvard University, 1964). Princeton Math. Notes 59. · Zbl 0128.15505
[10] Oort, F.: Commutative group schemes. Lecture Notes in Math. 15. Berlin-Heidelberg-New York: Springer 1966. Referred to as CGS. · Zbl 0216.05603
[11] ?: Algebraic group schemes in characteristic zero are reduced. Inv. Math.2, 79-80 (1966). · Zbl 0173.49002
[12] Oort, F.: Embedding of finite group schemes into abelian schemes. Mimeographed notes from the advanced science seminar in algebraic geometry, Bowdoin college, summer 1967.
[13] Tate, J., and F. Oort: Finite group schemes of prime rank (to appear). · Zbl 0225.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.