zbMATH — the first resource for mathematics

Improved poloidal convergence of the MARS code for MHD stability analysis. (English) Zbl 1074.76646
Summary: Most codes for the analysis of magnetohydrodynamics (MHD) stability experience difficulties when the equilibrium is highly shaped or has an X-point. In particular, codes using Fourier expansion in the poloidal direction may need a large number of Fourier components to give reasonably accurate values of the growth rate. In the present work, it is shown that the poloidal convergence can be improved by a judicious choice of normalization factors for the perturbation quantities and multipliers for the equations. Using this method, a new version of the MARS code has been produced with significantly improved poloidal convergence.

76W05 Magnetohydrodynamics and electrohydrodynamics
76M99 Basic methods in fluid mechanics
Full Text: DOI
[1] Gruber, R.; Troyon, F.; Berger, D., Comput. phys. commun., 21, 323, (1981)
[2] Grimm, R.C.; Greene, J.M.; Johnson, J.L., Meth. comput. phys., 9, 253, (1976)
[3] Cheng, C.Z., Phys. rep., 211, 1, (1992)
[4] Kerner, W.; Poedts, S.; Goedbloed, J.P.; Huysmans, G.T.A.; Keegan, B.; Schwarz, E.; Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W., (), Phys. fluids B, 5, 1545, (1993)
[5] Bondeson, A.; Vlad, G.; Lütjens, H., (), 306
[6] Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.; Gruber, R., Comput. phys. commun., 103, 10, (1997)
[7] Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Kerner, W.; Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F., J. comput. phys., 28, 1, (1978)
[8] Rosenbluth, M.; Hogan, J.; Boucher, D.; Bondeson, A.; Villard, L.; Ward, D.J.; Wermeille, D.; Goedbloed, J.P.; Holties, H.A.; Hender, T.C.; Huysmans, G.T.A.; Kerner, W., MHD stability of ITER equilibria, (), 517
[9] Antonsen, T.M.; Bondeson, A.; Antonsen, T.M.; Bondeson, A., Phys. rev. lett., Phys. fluids B, 5, 4090, (1993)
[10] Lütjens, H.; Bondeson, A.; Sauter, O., Comput. phys. commun., 97, 219, (1996)
[11] Gruber, R., Comput. phys. commun., 20, (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.