×

zbMATH — the first resource for mathematics

Flux in axiomatic potential theory. II: Duality. (English) Zbl 0181.11703

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] H. BAUER, Harmonische Räume und ihre potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). · Zbl 0142.38402
[2] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Axiomatic theory of harmonic functions : nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble) 15 (1965), 283-312. · Zbl 0139.06604
[3] G. E. BREDON, Sheaf theory, McGraw-Hill, (1967). · Zbl 0158.20505
[4] M. BRELOT, Lectures on potential theory, Tata Institute, Bombay, 1960. · Zbl 0098.06903
[5] C. H. DOWKER, Lectures on sheaf theory, Tata Institute, Bombay, 1957.
[6] N. DUNFORD and J. T. SCHWARTZ, Linear operators I, Interscience, New York, 1958. · Zbl 0084.10402
[7] R. C. GUNNING, Lectures on Riemann surfaces, Princeton Univ. Press, 1966. · Zbl 0175.36801
[8] R. C. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, 1965. · Zbl 0141.08601
[9] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. · Zbl 0101.08103
[10] P. A. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. · Zbl 0172.15101
[11] F.-Y. MAEDA, Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ. Ser. A-1 30 (1966), 197-215. · Zbl 0168.09702
[12] P. A. MEYER, Brelot’s axiomatic theory of the Dirichlet problem and Hunt’s theory, Ann. Inst. Fourier (Grenoble) 13 (1963), 357-372. · Zbl 0116.30404
[13] B. RODIN and L. SARIO, Principal functions, van Nostrand, Princeton, 1968. · Zbl 0159.10701
[14] H. SCHAEFER, Topological vector spaces, Macmillan, New York, 1966. · Zbl 0141.30503
[15] H. SCHAEFER, Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715. · Zbl 0168.11801
[16] B. WALSH and P. A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. · Zbl 0144.15503
[17] N. BOURBAKI, Intégration, Ch. V : Intégration des Mesures, Hermann et Cie, Paris, 1956.
[18] D. HINRICHSEN, Randintegrale und nukleare funktionenräume, Ann. Inst. Fourier (Grenoble) 17 (1967), 225-271. · Zbl 0165.14702
[19] A. DE LA PRADELLE, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 17 (1967), 383-399. · Zbl 0153.15501
[20] H.-G. TILLMANN, Dualität in der potentialtheorie, Port. Math. 13 (1954), 55-86. · Zbl 0056.33403
[21] B. WALSH, Flux in axiomatic potential theory. I : cohomology, Inventiones Math. 8 (1969), 175-221. · Zbl 0179.15203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.