Interpolation zwischen den Klassen \({\mathfrak S}_ p\) von Operatoren in Hilberträumen. (German) Zbl 0181.13504


46M35 Abstract interpolation of topological vector spaces
47B07 Linear operators defined by compactness properties
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI


[1] and , Semi-Groups of Operators and Approximation, Berlin-Heidelberg-New York 1967.
[2] [Russian Text Ignored] 1965.
[3] Grothendieck, Mem. Amer. math. Soc. 16 (1955)
[4] , , Inequalities, Cambridge 1964.
[5] Krée, Ann. Inst. Fourier 17 pp 137– (1968) · Zbl 0173.15801
[6] McCarthy, Israel J. of Math. 5 pp 249– (1967)
[7] Oloff, Wiss. Zeitschr. d. Univ. Jena 2 (1969)
[8] Inledning till interpolation. Föreläsningar 1964–1966, Lund.
[9] A new approach in interpolation spaces. Studia math. (in Vorbereitung).
[10] [Russian Text Ignored] 3 (1968).
[11] Triebel, Inventiones math. 4 pp 275– (1967)
[12] Trigonometrical Series, Cambridge 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.