Maier, Giulio Quadratic programming and theory of elastic-perfectly plastic structures. (English) Zbl 0181.53704 Meccanica 3, 265-273 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 32 Documents Keywords:mechanics of solids × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. Maier,A quadratic programming approach for certain nonlinear structural problems, Meccanica, no. 2, 1968. · Zbl 0165.28502 [2] G. Maier,Some theorems for plastic strain rates and plastic strains, Journal de Mécanique, no. 1, 1969. · Zbl 0176.25901 [3] H. P. Künzi andW. Krelle,Nichtlineare Programmierung, Springer Verlag, Berlin, 1962. (Engl. transl.:Nonlinear programming, Blaisdell Pub., Waltham, 1966). [4] J. C. G. Boot,Quadratic programming, North-Holland Pub., Amsterdam, 1964. · Zbl 0138.15802 [5] L. Collatz andW. Wetterling,Optimierungsaufgaben, Springer Verlag, Berlin, 1966. [6] G. Hadley,Nonlinear and dynamic programming, Addison-Wesley, Reading, Mass., 1964. · Zbl 0179.24601 [7] L. Contri,Del teorema di Haar e Kármán in presenza di scarichi locali, Giorn. Genio Civ., no. 1, 1960. [8] K. A. Reckling,Plastizitatstheorie und ihre Anwendung auf Festigkeitprobleme, Springer Verlag, Berlin, 1967. · Zbl 0149.43205 [9] B. Finzi,Principio variazionale nella meccanica dei continui, Atti R. Accad. d’Italia, Cl. Scienze. Fis. Mat. Nat., Serie VII, Vol. I, 1940. · Zbl 0025.27302 [10] G. Maier,A method for approximate solution of stationary creep problems, to appear in Meccanica. · Zbl 0197.23304 [11] H. W. Kuhn andA. W. Tucker,Nonlinear programming, Proc. II Berkeley Symp. on Math. Stat. and Prob., Ed. J. Neymans, Los Angeles, 1951. · Zbl 0044.05903 [12] A. Haar, andT. von Karman,Zur Theorie der Spannungzustande in plastischen und sandartigen Medien, Göttinger Nachrichten, Math. Phys. K., 204, 1909. [13] W. Prager andP. S. Symonds,Stress analysis in elastic plastic structures, Proc. III Symp. Appl. Math., Ann. Arbor, Michigan, 1949. [14] V. Franciosi,Sul calcolo a rottura delle strutture monodimensionali in regime elastoplastico, Giorn. Genio Civ., no. 4, 1952. [15] W. T. Koiter,General theorems for elastic-plastic solids, in Progr. in Solid Mech., Ed. J. N. Sneddon and R. Hill, North-Holland Pub., Amsterdam, 1960. · Zbl 0109.43002 [16] W. Prager, andP. G. Hodge,Theory of perfectly plastic solids, J. Wiley, New York, 1951. · Zbl 0044.39803 [17] G. Colonnetti, Sul problema delle coazioni elastiche, Rendic. Accad. Lincei, Serie 5, 27, 1918. · JFM 46.1209.04 [18] M. Save,Une interprétation du théoreme de Colonnetti, Journ. Appl. Math. Physics, no. 5, 1962. · Zbl 0112.17303 [19] J. B. Dennis,A dual problem for a class of quadratic programs, MIT Research Note, no. 1, 1957. [20] W. S. Dorn,Duality in quadratic programming, Quart. Appl. Math., no. 2, 1960. · Zbl 0101.37003 [21] M. R. Horne,The stability of elastic plastic structures, in: Progr. in Sol. Mech., Vol. II, North-Holland Publ. Amsterdam, 1961. · Zbl 0102.02201 [22] C. Gavarini,I teoremi fondamentali del calcolo a rottura e la dualità in programmazione lineare, Ingegneria Civile, no. 18, 1966. [23] D. L. Drucker, W. Prager andH. J. Greenberg,Extended limit design theorems for continuous media, Quart. Appl. Math., no. 4, 1951. · Zbl 0047.43201 [24] H. J. Greenberg,The principle of limiting stress for structures, 2d Symp. on Plasticity, Brown Univ., 1949. · Zbl 0032.22204 [25] S. M. Feinberg,The principle of limiting stress (in Russian), Prik. Mat. i Mekh, no. 12, 1948. [26] R. K. Livesley,Matrix methods of structural analysis, Pergamon Press, Oxford, 1964. · Zbl 0139.17903 [27] O. C. Zienkiewicz andY. K. Cheung,The finite element method in structural and continuum mechanics, McGraw-Hill, London, 1967. · Zbl 0189.24902 [28] G. Maier,Contributi per una teoria delle strutture elastoplastiche con impostazione ”alla Colonnetti”, to appear. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.