×

zbMATH — the first resource for mathematics

Die Existenz wohlgeordneter, konfinaler Teilmengen in Ketten und das Auswahlaxiom. (German) Zbl 0182.33001
Math. Z. 111, 211-232 (1969); correction ibid. 115, 392 (1970).
Keywords:
set theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Sur le th?or?me de Zorn. Arch. d. Math.2, 434-437 (1949/50) · Zbl 0045.32902
[2] Felgner, U.: Untersuchungen ?ber das Zornsche Lemma. Compositio Math.18, 170-180 (1967). · Zbl 0168.25304
[3] G?del, K.: The consistency of the continuum hypothesis. Ann. Math. Studies Nr. 3, Princeton 1940.
[4] Halpern, J. D.: Dissertation. Berkeley: University of California 1962.
[5] Kneser, H.: Eine direkte Ableitung des Zornschen Lemmas aus dem Auswahlaxiom. Math. Z.53, 110-113 (1950). · Zbl 0037.31902
[6] Kuratowski, C.: Une m?thode d’?limination des nombres transfinis des raisonnements math?matiques. Fundamenta Math.3, 76-108 (1922). · JFM 48.0205.04
[7] Kurepa, G.: ?ber das Auswahlaxiom. Math. Ann.126, 381-384 (1953). · Zbl 0053.22303
[8] Mathias, A. R. D.: The order extension principle. Lecture Notes prepared in connection with the Summer Institute on Axiomatic set theory, Los Angeles, July 10?August 4, 1967, S.III-J-1-III-J-11. Siehe auch Notices AMS14, 410 (1967).
[9] Rubin, H.: Two propositions equivalent to the axiom of choice only under both the axioms of extensionality and regularity. Notices AMS7, 381 (1960).
[10] Rubin, H., and J. E. Rubin: Equivalents of the axiom of choice. Amsterdam 1963 (Studies in Logic). · Zbl 0129.00601
[11] Szpilraijn, E. (Marczewski, E.): Sur l’extension de l’ordre partiel. Fundamenta Math.16, 386-389 (1930). · JFM 56.0843.02
[12] Zorn, M.: A remark on method in transfinite algebra. Bull. AMS41, 667-670 (1935). · JFM 61.1028.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.