Sinai, Ya. G. Markov partitions and \(C\)-diffeomorphisms. (English. Russian original) Zbl 0182.55003 Funct. Anal. Appl. 2, 61-82 (1968); translation from Funkts. Anal. Prilozh. 2, No. 1, 64-89 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 117 Documents MSC: 37C05 Dynamical systems involving smooth mappings and diffeomorphisms Keywords:differential geometry PDFBibTeX XMLCite \textit{Ya. G. Sinai}, Funct. Anal. Appl. 2, 61--82 (1968; Zbl 0182.55003); translation from Funkts. Anal. Prilozh. 2, No. 1, 64--89 (1968) Full Text: DOI References: [1] R. Adler, A. G. Konheim, and M. H. McAndrew, ”Topological entropy,” Trans. Am. Math. Soc.,114, 309-319 (1965). · Zbl 0127.13102 · doi:10.1090/S0002-9947-1965-0175106-9 [2] R. Adler and B. Weiss, ”Entropy, a complete metric invariant for automorphisms of the torus,” Proc. Nat. Acad. Sci. USA,57, No. 6, 1573-1576 (1967). · Zbl 0177.08002 · doi:10.1073/pnas.57.6.1573 [3] D. V. Anosov, ”Geodesic flows on closed Riemannian manifolds of negative curvature,” Trudy Matem. Inst. im. V. A. Steklova,90 (1967). · Zbl 0176.19101 [4] D. V. Anosov and Ya. G. Sinai, ”Certain smooth ergodic systems,” Uspekhi Mat. Nauk,22, No. 5, 107-172 (1967). · Zbl 0177.42002 [5] V. J. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1967). · Zbl 0149.21704 [6] J. L. Doob, Stochastic Processes, Wiley, New York (1953). [7] W. Parry, ”Intrinsic Markov chains,” Trans. Am. Math. Soc.,112, 55-66 (1964). · Zbl 0127.35301 · doi:10.1090/S0002-9947-1964-0161372-1 [8] Ya. G. Sinai, ”Classical dynamical systems with a denumerable-tuple Lebesgue spectrum. II,” Izv. Akad. Nauk SSSR, Ser. Matem.,30, 15-68 (1966). [9] Ya. G. Sinai, ”A lemma from measure theory,” Matem. Zametki,2, No. 4, 373-378 (1967). · Zbl 0155.38403 [10] D. V. Anosov, ”Tangential fields of transversal foliations in C-systems,” Matem. Zametki,2, No. 5, 539-548 (1967). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.