×

zbMATH — the first resource for mathematics

Entropy of conservative transformations. (English) Zbl 0183.19303

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kakutani, S.: Induced measure-preserving transformations. Proc. Imp. Acad. Sci. Tokyo 19, 635-641 (1943). · Zbl 0060.27406 · doi:10.3792/pia/1195573248
[2] Abramov, L. M.: The entropy of a derived automorphism. Doklady Akad. Nauk SSSR, n. Ser. 128, 647-650 (1959) (Russian). · Zbl 0094.10001
[3] Kolmogorov, A. N.: A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue-spaces. Doklady Akad. Nauk SSSR, n. Ser. 119, 861-864 (1958) (Russian). · Zbl 0083.10602
[4] ?: On the entropy per unit time as a metric invariant of automorphisms. Doklady Akad. Nauk SSSR, n. Ser. 124, 754-755 (1959) (Russian). · Zbl 0086.10101
[5] Helmberg, G.: über die Zerlegung einer me\(\backslash\)baren Transformation in konservative und dissipative Bestandteile. Math. Z. 88, 358-367 (1965). · Zbl 0145.28002 · doi:10.1007/BF01111817
[6] ?: über rein dissipative Transformationen. Math. Z. 90, 41-53 (1965). · Zbl 0178.38701 · doi:10.1007/BF01112051
[7] Sucheston, L.: A note on conservative transformations and the recurrence theorem. Amer. J. Math. 79, 444-447 (1957). · Zbl 0077.27002 · doi:10.2307/2372691
[8] Halmos, P. R.: Invariant measures. Ann. of Math., II. Ser. 48, 735-754 (1947). · Zbl 0029.35202 · doi:10.2307/1969138
[9] Scheller, H.: Induzierte dynamische Systeme. Diplomarbeit der Mathematisch-Naturwissenschaftlichen FakultÄt der UniversitÄt Göttingen, 62 pages (1965).
[10] Jacobs, K.: Lecture notes on ergodic theory. Universitet Aarhus. Matematisk Institut (1962/63).
[11] ?: Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebn. der Mathematik, N. F. Heft 29. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0102.32903
[12] Sinai, Ya. G.: On the concept of entropy for dynamical systems (in Russian). Doklady Akad. Nauk SSSR, n. Ser. 124, 768-771 (1959). · Zbl 0086.10102
[13] Billingsley, P.: Ergodic Theory and Information. New York: J. Wiley 1965. · Zbl 0141.16702
[14] Harris, T. E., and H. E. Robbins: Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. nat. Acad. Sci. USA 39, 860-864 (1953). · Zbl 0051.10503 · doi:10.1073/pnas.39.8.860
[15] Rokhlin, V. A.: Exact endomorphisms of a Lebesgue-space. Izvestija Akad. Nauk. SSSR, Ser. mat. 25, 499-530 (1961).
[16] Chung, K. L.: Markov chains with stationary transition probabilities, 104. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0092.34304
[17] Choksi, J. R.: Extension of a theorem of E. Hopf. J. London math. Soc. 36, 81-88 (1961). · Zbl 0094.09904 · doi:10.1112/jlms/s1-36.1.81
[18] Wright, F. B.: The recurrence theorem. Amer. math. Monthly 68, 247-248 (1961). · Zbl 0192.14301 · doi:10.2307/2311456
[19] Kakutani, S., and W. Parry: Infinite measure preserving transformations with ?mixing?. Bull. Amer. math. Soc., 69, 752-756 (1963). · Zbl 0126.31801 · doi:10.1090/S0002-9904-1963-11022-8
[20] Abramov, L. M.: On the entropy of a flow. Doklady Akad. Nauk SSSR, n. Ser. 128, 873-876 (1959) (Russian). · Zbl 0094.10002
[21] Chacon, R. V.: Notices. Amer. math. Soc. 84, 709, Oct. 1965.
[22] Parry, W.: Ergodic and spectral analysis of certain infinite measure preserving transformations. Proc. Amer. math. Soc. 16, 960-966 (1965). · Zbl 0154.30601 · doi:10.1090/S0002-9939-1965-0181737-8
[23] Abramov, L. M., and V. A. Rokhlin: The entropy of a skew product of measure preserving transformations, Vestnik Leningrad. Univ. (Ser. Mat. Meh. Astron. Nr. 7) 17, 5-13 (1962).
[24] Adler, R. L.: A note on the entropy of skew product transformations. Proc. Amer. math. Soc. 14, 665-669 (1963). · Zbl 0131.29502 · doi:10.1090/S0002-9939-1963-0153818-4
[25] Krengel, U.: über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen. Math. Scandinav. 13, 151-187 (1963). · Zbl 0201.16702
[26] Rokhlin, V. A.: Entropy of metric automorphisms. Doklady Akad. Nauk SSSR, n. Ser. 124, 980-983 (1959) (Russian). · Zbl 0096.31405
[27] Jacobs, K.: Ergodic decomposition of the Kolmogorov-Sinai invariant: a simple proof. Trans. Sympos. Ergodic Theory at Tulane 1961; ed. Wright (1963).
[28] Halmos, P. R.: The decomposition of measures. Duke math. J. 8, 386-392 (1941). · Zbl 0025.14901 · doi:10.1215/S0012-7094-41-00830-X
[29] Rokhlin, V. A.: On the decomposition of a dynamical system into transitive components. Mat. Sbornik, n. Ser. 25, 235-249 (1949). · Zbl 0034.06501
[30] Gnedenko-Kolmogorov: Grenzverteilungen von Summen unabhÄngiger Zufallsgrö\(\backslash\)en. Berlin: Akademie-Verlag (1960).
[31] Ambrose, W., P. R. Halmos, and S. Kakutani: The decomposition of measures II. Duke math. J. 9, 43-47 (1942). · Zbl 0063.00066 · doi:10.1215/S0012-7094-42-00905-0
[32] Pinsker, M. S.: Dynamical systems with complete positive or zero entropy. Doklady Akad. Nauk SSSR, n. Ser. 133, 1025-1026 (1960).
[33] Rokhlin, V. A.: Generators in ergodic theory. Vestnik Leningrad. Univ. (Ser. Mat. Meh. Astron.) 18, 26-32 (1963). · Zbl 0167.32802
[34] -Generators in ergodic theory II; Vestnik Leningr. Univ., 13, (1965).
[35] Parry, W.: Generators and strong generators in ergodic theory. Bull. Amer. math. Soc. 72, 294-296 (1966). · Zbl 0144.29802 · doi:10.1090/S0002-9904-1966-11498-2
[36] Rokhlin, V. A., and Ja. G. Sinai: Construction and properties of invariant measurable partitions. Doklady Akad. Nauk SSSR, n. Ser. 141, 1038-1041 (1961).
[37] ?: On the fundamental ideas of measure theory. Mat. Sbornik, n. Ser. 25 (67), 107-150 (1949).
[38] Halmos, P. R.: Approximation theories for measure preserving transformations. Trans. Amer. math. Soc. 55, 1-18 (1944). · Zbl 0063.01890
[39] ?:Lectures on ergodic theory. Math. Soc. of Japan, Tokyo (1956). · Zbl 0073.09302
[40] Hopf, E.: Ergodentheorie. Berlin: Springer 1937.
[41] Hajian, A., and S. Kakutani: Transformations of ?-type. Sympos. Oberwolfach, to appear.
[42] Krengel, U.: Classification of states for operators. Proc. Fifth Berkeley Sympos. math. Statist Probability, to appear. · Zbl 0236.60051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.