Halton, J. H.; Zaremba, S. K. The extreme and \(L^2\) discrepancies of some plane sets. (English) Zbl 0183.31401 Monatsh. Math. 73, 316-328 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 38 Documents MSC: 11K38 Irregularities of distribution, discrepancy Keywords:number theory × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Davenport, H.: Note on irregularities of distribution. Mathematika3, 131-135 (1956). · Zbl 0073.03402 · doi:10.1112/S0025579300001807 [2] Gabai, H.: On the discrepancy of certain sequences mod 1. Indag. Math.25, 603-605 (1963). · Zbl 0129.03102 [3] Halton, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals. Numer. Math.2, 84-90 and 196 (1960). · Zbl 0090.34505 · doi:10.1007/BF01386213 [4] Halton, J. H.: A retrospective and prospective survey of the Monte Carlo method, SIAM Rev. (to appear). · Zbl 0193.46901 [5] Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura App. (iv)54, 325-334 (1961). · Zbl 0103.27604 · doi:10.1007/BF02415361 [6] Roth, K. F.: On irregularities of distribution. Mathematika1, 73 bis 79 (1954). · Zbl 0057.28604 · doi:10.1112/S0025579300000541 [7] Zaremba, S. K.: The mathematical basis of Monte Carlo and quasi-Monte Carlo methods. SIAM Rev.10, 303-314 (1968). · doi:10.1137/1010056 [8] Zaremba, S. K.: Some applications of multidimensional integration by parts. Ann. Polon. Math.21, 85-96 (1969). · Zbl 0174.08402 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.