×

zbMATH — the first resource for mathematics

Untersuchungen über singuläre reelle S-hermitesche Differentialgleichungssysteme im Normalfall. (German) Zbl 0183.36201

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Brauer, F.: Spectral theory for linear systems of differential equations. Pac. Journ.10, 17-34 (1960). · Zbl 0188.46302
[2] Hellwig, G.: Differentialoperatoren der Mathematischen Physik. Berlin-Göttingen-Heidelberg: Springer 1964. · Zbl 0134.08602
[3] Kodaira, K.: On ordinary differential equations of any even order and the corresponding eigenfunction expansions. Am. Journ. Math.72, 502-544 (1950). · Zbl 0054.03903 · doi:10.2307/2372051
[4] Schäfke, F. W., u. A. Schneider:S-hermitesche Rand-Eigenwertprobleme I. Math. Ann.162, 9-26 (1965). · Zbl 0151.11102 · doi:10.1007/BF01361930
[5] ?:S-hermitesche Rand-Eigenwertprobleme II. Math. Ann.165, 236-260 (1966). · Zbl 0158.09003 · doi:10.1007/BF01343801
[6] ?:S-hermitesche Rand-Eigenwertprobleme III. Math. Ann.177, 67-94 (1968). · Zbl 0164.10101 · doi:10.1007/BF01350731
[7] Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann.68, 220-269 (1910). · JFM 41.0343.01 · doi:10.1007/BF01474161
[8] Krumhaar, H.: Zur Theorie der gewöhnlichen selbstadjungierten Differentialoperatoren gerader Ordnung. Math. Ann.130, 109-136 (1955). · Zbl 0067.06403 · doi:10.1007/BF01351277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.