×

zbMATH — the first resource for mathematics

The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components. (English) Zbl 0183.50901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Bott and H. Samelson, The cohomology ring of \?/\?, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 490 – 493. · Zbl 0064.25903
[2] Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265 – 288. · Zbl 0137.27402 · doi:10.2307/1970616 · doi.org
[3] Bertram Kostant, On the conjugacy of real Cartan subalgebras. I, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 967 – 970. · Zbl 0065.26901
[4] Bertram Kostant, Orbits, symplectic structures and representation theory, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. p. 71. · Zbl 0141.02701
[5] B. Kostant, Lectures on symplectic manifolds and unitary representations, Course given at M.I.T. in Fall, 1965; class notes by N. Iwahori.
[6] Toshiyuki Maebashi, A fixpoint theorem on \?\?(\?)/\?(\?), Math. J. Okayama Univ. 12 (1966), 91 – 105. · Zbl 0161.27404
[7] Calvin C. Moore, Compactifications of symmetric spaces. II. The Cartan domains, Amer. J. Math. 86 (1964), 358 – 378. · Zbl 0156.03202 · doi:10.2307/2373170 · doi.org
[8] Masaru Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81 – 192 (1965). · Zbl 0144.22804
[9] Masaru Takeuchi, On orbits in a compact hermitian symmetric space, Amer. J. Math. 90 (1968), 657 – 680. · Zbl 0181.24304 · doi:10.2307/2373477 · doi.org
[10] Joseph A. Wolf, On the classification of hermitian symmetric spaces, J. Math. Mech. 13 (1964), 489 – 495. · Zbl 0245.32011
[11] Joseph A. Wolf, The goemetry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59 – 148. · Zbl 0157.52102 · doi:10.1007/BF02394607 · doi.org
[12] J. A. Wolf, The action of a real semisimple group on a complex flag manifold. II: Unitary representations on partially holomorphic cohomology spaces (in preparation). · Zbl 0288.22022
[13] Joseph A. Wolf and Phillip A. Griffiths, Complete maps and differentiable coverings, Michigan Math. J. 10 (1963), 253 – 255. · Zbl 0163.43601
[14] Joseph A. Wolf and Alfred Gray, Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968), 77 – 114. Joseph A. Wolf and Alfred Gray, Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968), 115 – 159. · Zbl 0169.24103
[15] Joseph A. Wolf and Adam Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899 – 939. · Zbl 0137.27403 · doi:10.2307/2373253 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.