×

Vector fields on manifolds. (English) Zbl 0183.51703


Keywords:

topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20 – 104. · Zbl 0096.17404
[2] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603 – 632. · Zbl 0112.38102
[3] José Adem, The relations on Steenrod powers of cohomology classes. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 191 – 238. · Zbl 0199.26104
[4] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7 – 38. · Zbl 0108.17705
[5] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546 – 604. · Zbl 0164.24301
[6] M. G. Barratt and M. E. Mahowald, The metastable homotopy of \?(\?), Bull. Amer. Math. Soc. 70 (1964), 758 – 760. · Zbl 0134.19204
[7] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458 – 538. · Zbl 0097.36401
[8] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313 – 337. · Zbl 0129.15601
[9] Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. · Zbl 0158.20505
[10] G. Bredon and A. Kosinski, Vector fields on \pi -manifolds, Ann. of Math. (2) 84 (1966), 85-90. · Zbl 0151.31701
[11] Beno Eckmann, Systeme von Richtungsfeldern in Sphären und stetige Lösungen komplexer linearer Gleichungen, Comment. Math. Helv. 15 (1943), 1 – 26 (German). · Zbl 0027.14401
[12] Beno Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comment. Math. Helv. 15 (1943), 358 – 366 (German). · Zbl 0028.10402
[13] D. Frank (to appear).
[14] David Frank and Emery Thomas, A generalization of the Steenrod-Whitehead vector field theorem, Topology 7 (1968), 311 – 316. · Zbl 0186.57303
[15] S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85 – 107. · Zbl 0173.51103
[16] Samuel Gitler and James D. Stasheff, The first exotic class of \?\?, Topology 4 (1965), 257 – 266. · Zbl 0136.44003
[17] André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367 – 397 (French). · Zbl 0122.40702
[18] André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248 – 329 (French). · Zbl 0085.17303
[19] André Haefliger and Morris W. Hirsch, Immersions in the stable range, Ann. of Math. (2) 75 (1962), 231 – 241. · Zbl 0186.27301
[20] Robert Hermann, Secondary obstructions for fibre spaces, Bull. Amer. Math. Soc. 65 (1959), 5 – 8. · Zbl 0101.15904
[21] Robert Hermann, Obstruction theory for fibre spaces, Illinois J. Math. 4 (1960), 9 – 27. · Zbl 0109.15802
[22] Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. · Zbl 0155.50801
[23] Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242 – 276. · Zbl 0113.17202
[24] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). · Zbl 0101.38301
[25] F. Hirzebruch and K. H. Mayer, \?(\?)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics, No. 57, Springer-Verlag, Berlin-New York, 1968 (German). · Zbl 0172.25304
[26] Friedrich Hirzebruch and Heinz Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156 – 172 (German). · Zbl 0088.39403
[27] Heinz Hopf, Vektorfelder in \?-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1927), no. 1, 225 – 249 (German). · JFM 52.0571.01
[28] Adolf Hurwitz, Mathematische Werke. Bd. I: Funktionentheorie, Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich, Birkhäuser Verlag, Basel-Stuttgart, 1962 (German). Adolf Hurwitz, Mathematische Werke. Bd. II: Zahlentheorie, Algebra und Geometrie, Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich, Birkhäuser Verlag, Basel-Stuttgart, 1963 (German).
[29] Adolf Hurwitz, Mathematische Werke. Bd. I: Funktionentheorie, Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich, Birkhäuser Verlag, Basel-Stuttgart, 1962 (German). Adolf Hurwitz, Mathematische Werke. Bd. II: Zahlentheorie, Algebra und Geometrie, Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich, Birkhäuser Verlag, Basel-Stuttgart, 1963 (German).
[30] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. · Zbl 0144.44804
[31] Michel Kervaire, Courbure intégrale généralisée et homotopie, Math. Ann. 131 (1956), 219 – 252 (French). · Zbl 0072.18202
[32] M. Kervaire, Non-parallelizability of the n-sphere for n>7, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 280-283. · Zbl 0093.37303
[33] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505
[34] Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. · Zbl 0103.15101
[35] W. B. R. Lickorish, A foliation for 3-manifolds, Ann. of Math. (2) 82 (1965), 414 – 420. · Zbl 0142.41104
[36] Elon L. Lima, Commuting vector fields on \?³, Ann. of Math. (2) 81 (1965), 70 – 81. · Zbl 0137.17801
[37] Mark Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315 – 349. · Zbl 0128.16805
[38] Mark Mahowald, On the metastable homotopy of \?(\?), Proc. Amer. Math. Soc. 19 (1968), 639 – 641. · Zbl 0183.28103
[39] Mark E. Mahowald and Franklin P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367 – 377. · Zbl 0166.19502
[40] W. S. Massey, On the Stiefel-Whitney classes of a manifold, Amer. J. Math. 82 (1960), 92 – 102. · Zbl 0089.39301
[41] W. S. Massey, On the Stiefel-Whitney classes of a manifold. II, Proc. Amer. Math. Soc. 13 (1962), 938 – 942. , https://doi.org/10.1090/S0002-9939-1962-0142129-8 Karl Heinz Mayer, Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen, Topology 4 (1965), 295 – 313 (German). · Zbl 0173.25903
[42] J. F. McClendon, Higher order twisted cohomology operations, Thesis, University of California, Berkeley, Calif., 1966. · Zbl 0206.25102
[43] J. Milnor, Lectures on characteristic classes, Mimeographed Notes, Princeton University, Princeton, N. J., 1957.
[44] John Milnor, Some consequences of a theorem of Bott, Ann. of Math. (2) 68 (1958), 444 – 449. · Zbl 0085.17301
[45] J. Milnor, Spin structures on manifolds, Enseignement Math. (2) 9 (1963), 198 – 203. · Zbl 0116.40403
[46] John C. Moore, Semi-simplicial complexes and Postnikov systems, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 232 – 247. · Zbl 0089.18001
[47] S. P. Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965), 248 – 278 (Russian).
[48] S. P. Novikov, New ideas in algebraic topology. \?-theory and its applications, Uspehi Mat. Nauk 20 (1965), no. 3 (123), 41 – 66 (Russian).
[49] Paul Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953), 458 – 480. · Zbl 0052.19901
[50] G. Paechter, The groups \pi . I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249-268.
[51] Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957), iii+123. · Zbl 0178.26502
[52] Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171 – 206. · Zbl 0204.23701
[53] Anthony Phillips, Foliations on open manifolds. I, Comment. Math. Helv. 43 (1968), 204 – 211. · Zbl 0157.30503
[54] M. M. Postnikov, Investigations in the homotopy theory of continuous mappings. I. The algebraic theory of systems. II. The natural system and homotopy type, Amer. Math. Soc. Transl. (2) 7 (1957), 1 – 134. · Zbl 0079.16903
[55] J. Radon, Lineare scharen orthogonaler matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1923), 1-14. · JFM 48.0092.06
[56] Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., no. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5 – 89, 155 – 156. · Zbl 0049.12602
[57] Bruce L. Reinhart, Characteristic numbers of foliated manifolds, Topology 6 (1967), 467 – 471. · Zbl 0171.22301
[58] Harold Rosenberg, Foliations by planes, Topology 7 (1968), 131 – 138. · Zbl 0157.30504
[59] Richard Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79 – 102. · Zbl 0136.20903
[60] Richard Sacksteder, Degeneracy of orbits of actons of \?^{\?} on a manifold, Comment. Math. Helv. 41 (1966/1967), 1 – 9. · Zbl 0168.20901
[61] Hans Samelson, A note on the Bockstein operator, Proc. Amer. Math. Soc. 15 (1964), 450 – 453. · Zbl 0131.38007
[62] B. J. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964), 137 – 153. · Zbl 0122.41703
[63] Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425 – 505 (French). · Zbl 0045.26003
[64] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[65] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[66] N. E. Steenrod and J. H. C. Whitehead, Vector fields on the \?-sphere, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 58 – 63. · Zbl 0054.07104
[67] Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0129.13102
[68] E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv. 8 (1935), no. 1, 305 – 353 (German). · JFM 62.0662.02
[69] R. Strong, Determination of H*(BO(k, ●●●, \infty )) and H*(BO(k, ●●●, \infty ), Z, Trans. Amer. Math. Soc. 107 (1963), 526-544.
[70] W. A. Sutherland, Fibre homotopy equivalence and vector fields, Proc. London Math. Soc. (3) 15 (1965), 543 – 556. · Zbl 0137.42702
[71] René Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. (3) 69 (1952), 109 – 182 (French). · Zbl 0049.40001
[72] Emery Thomas, Seminar on fiber spaces, Lectures delivered in 1964 in Berkeley and 1965 in Zürich. Berkeley notes by J. F. McClendon. Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. · Zbl 0151.31604
[73] Emery Thomas, Cross-sections of stably equivalent vector bundles, Quart. J. Math. Oxford Ser. (2) 17 (1966), 53 – 57. · Zbl 0135.41301
[74] Emery Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184 – 217. · Zbl 0152.22002
[75] Emery Thomas, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183 – 1205. · Zbl 0153.53503
[76] Emery Thomas, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86 – 110. · Zbl 0153.53504
[77] Emery Thomas, Fields of tangent 2-planes on even-dimensional manifolds, Ann. of Math. (2) 86 (1967), 349 – 361. · Zbl 0168.21401
[78] Emery Thomas, Fields of tangent \?-planes on manifolds, Invent. Math. 3 (1967), 334 – 347. · Zbl 0162.55402
[79] Emery Thomas, Vector fields on low dimensional manifolds, Math. Z. 103 (1968), 85 – 93. · Zbl 0162.55403
[80] E. Thomas, ”Characteristic classes and differentiable manifolds” in Classi Caratteristiche e questioni connesse, Edizioni Cremonese, Rome, 1967, pp. 115-187.
[81] Emery Thomas, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225 – 244. · Zbl 0167.51901
[82] George W. Whitehead, Homotopy properties of the real orthogonal groups, Ann. of Math. (2) 43 (1942), 132 – 146. · Zbl 0060.41415
[83] George W. Whitehead, On families of continuous vector fields over spheres, Ann. of Math. (2) 47 (1946), 779 – 785. · Zbl 0060.41414
[84] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001
[85] Wen-tsün Wu, Les \?-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918 – 920 (French). · Zbl 0035.24904
[86] Wen-tsün Wu, Classes caractéristiques et \?-carrés d’une variété, C. R. Acad. Sci. Paris 230 (1950), 508 – 511 (French). · Zbl 0035.11002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.