Yuan, S. On logarithmic derivatives. (English) Zbl 0184.06801 Bull. Soc. Math. Fr. 96, 41-52 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 Documents Keywords:commutative algebra × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] BOURBAKI (Nicolas) . Algèbre commutative . Chap. 1 et 2. Paris, Hermann, 1961 (Act. scient. et ind., 1290; Bourbaki, 27). Zbl 0108.04002 · Zbl 0108.04002 [2] BOURBAKI (Nicolas) . Algèbre commutative . Chap. 7, Diviseurs. Paris, Hermann, 1965 (Act. scient. et ind., 1314; Bourbaki, 31). Zbl 0141.03501 · Zbl 0141.03501 [3] CARTIER (Pierre) . Questions de rationalité des diviseurs en géométrie algébrique , Bull. Soc. math. France, t. 86, 1958 , p. 177-251 (Thèse Sc. math., Paris, 1958 ). Numdam | Zbl 0091.33501 · Zbl 0091.33501 [4] GROTHENDIECK (Alexander) et DIEUDONNÉ (Jean) . Éléments de géométrie algébrique , I. Le langage des schémas. Paris, Presses Universitaires de France, 1960 (Institut des Hautes Études Scientifiques, Publications mathématiques, 4). Numdam | Zbl 0118.36206 · Zbl 0118.36206 · doi:10.1007/BF02684778 [5] HALLIER (Nicole) . Quelques propriétés arithmétiques des dérivations , C. R. Acad. Sc., t. 258, 1964 , p. 6041-6044. MR 30 #2029 | Zbl 0218.13004 · Zbl 0218.13004 [6] HALLIER (Nicole) . Utilisation des groupes de cohomologie , C. R. Acad. Sc., t. 261, 1965 , p. 3922-3924. Zbl 0136.31903 · Zbl 0136.31903 [7] JACOBSON (N.) . Abstract derivations and Lie algebras , Trans. Amer. math. Soc., t. 42, 1937 , p. 206-224. MR 1501922 | Zbl 0017.29203 | JFM 63.0873.03 · Zbl 0017.29203 · doi:10.2307/1989656 [8] SAMUEL (Pierre) . Classes de diviseurs et dérivées logarithmiques , Topology, Oxford, t. 3, 1964 , p. 81-96. MR 29 #3490 | Zbl 0127.26002 · Zbl 0127.26002 · doi:10.1016/0040-9383(64)90006-0 [9] YUAN (Shuen) . Differentiably simple rings , Duke math. J., t. 31, 1964 , p. 623-630. Article | MR 29 #4772 | Zbl 0145.27701 · Zbl 0145.27701 · doi:10.1215/S0012-7094-64-03161-8 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.