zbMATH — the first resource for mathematics

On Tate’s duality theorems in Galois cohomology. (English) Zbl 0184.07704

11R34 Galois cohomology
number theory
Full Text: DOI
[1] E. ARTIN AND J. TATE, Class Field Theory.
[2] A. BRUMER, Galois groups of extenisons of algebraic number fields with given ramifi cation, Michigan Math. J., 13(1966). · Zbl 0141.04803 · doi:10.1307/mmj/1028999477
[3] K. HOECHSMANN, Zum Einbettungsproblem, J. fur Math., 229 (1968) · Zbl 0185.11202 · doi:10.1515/crll.1968.229.81 · crelle:GDZPPN002182769 · eudml:150833
[4] S. LANG, Rapport sur la cohomologie des groupes · Zbl 0171.28903
[5] G. PoiTOU, Remarques sur homologie des groupes profinis, Colloques CNRS, 143(1966) · Zbl 0146.04801
[6] T. TAKAHASHI, Galois cohomoloy of finitely generated modules, ibid · Zbl 0858.62012
[7] J. TATE, Duality theorems in Galois cohomology over number fields, Proc. Int. Congr Stockholm, 1962. · Zbl 0126.07002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.