×

zbMATH — the first resource for mathematics

On the classification of the Banach spaces whose duals are \(L_1\) spaces. (English) Zbl 0184.15102

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arens, R.F; Kelley, J.L, Characterization of the space of continuous functions over a compact Hausdorff space, Trans. am. math. soc., 62, 499-508, (1947) · Zbl 0032.03202
[2] Day, M.M, Normed linear spaces, (1962), Springer Verlag Berlin · Zbl 0109.33601
[3] Grothendieck, A, Une caractérisation vectorielle métrique des espaces L1, Canadian J. math., 7, 552-561, (1955) · Zbl 0065.34503
[4] Gurari, V.I, Universal arrangement spaces, isotopic spaces and Mazur’s problem on rotations in Banach spaces (Russian), S. B. mat. J., 1003-1013, (1966)
[5] Jerison, M, Certain spaces of continuous functions, Trans. am. math. soc., 70, 103-113, (1951) · Zbl 0042.35701
[6] Kakutani, S, Concrete representation of abstract M spaces, Ann. math., 42, 994-1024, (1941) · Zbl 0060.26604
[7] Lazar, A.J; Lindenstrauss, J, On Banach spaces whose duals are L1 spaces, Israel J. math., 4, 205-207, (1966) · Zbl 0156.36501
[8] Lindenstrauss, J, Extensions of compact operators, Memoirs amer. math. soc. no. 48, (1964)
[9] Michael, E; Pełczynski, A, Separable Banach spaces which admit ln∞ approximations, Israel J. math., 4, 189-198, (1966) · Zbl 0151.17602
[10] Pełczynski, A, On C(S) subspaces of separable Banach spaces, Studia math., 31, 513-522, (1968) · Zbl 0169.15402
[11] Phelps, R.R, Lectures on Choquet’s theorem, (1965), Van Nostrand Princeton · Zbl 0135.36203
[12] Semadeni, Z, Free compact convex sets, Bull. acad. polon. sci., 13, 141-146, (1964) · Zbl 0135.16104
[13] Wulbert, D.E, Convergence of operators and Korovkin’s theorem, J. approximation theory, 1, 381-390, (1968) · Zbl 0167.12904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.