×

zbMATH — the first resource for mathematics

A Lie product formula for one parameter groups of isometries on Banach spaces. (English) Zbl 0184.16402

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Birkhoff, G.: A note on topological groups. Composito Math.3, 427-430 (1936). · JFM 62.0434.03
[2] Chernoff, P. R.: Note on product formulas for operator semigroups. J. Func. Anal.2, 238-242 (1968). · Zbl 0157.21501
[3] Dunford, N., Schwartz, J. T.: Linear operators, Part I, New York: Interscience 1958. · Zbl 0084.10402
[4] Faris, W. G.: The product formula for semigroups defined by Friedrichs extensions. Pac. J. Math.22, 47-70 (1967). · Zbl 0158.14802
[5] Goldstein, J. A.: Abstract evolution equations. Trans. Amer. Math. Soc.141, 159-186 (1969). · Zbl 0181.42602
[6] ?? Approximation of nonexpansive semigroups and the Trotter product formula. Notices Amer. Math. Soc.16, 830 (1969).
[7] Hausner, M., Schwartz, J. T.: Lie groups; Lie algebras. New York: Gordon and Breach 1968. · Zbl 0192.35902
[8] Hille, E., Phillips, R. S.: Functional analysis and semi-groups, Vol. 31. Providence: Amer. Math. Soc. Coll. Publ. 1957. · Zbl 0078.10004
[9] Hofmann, K. H.: Introduction to the theory of compact groups. Tulane University lecture notes, 1966-1967.
[10] Kakutani, S.: Über die Metrisation der topologischen Gruppen. Proc. Imp. Acad. Tokyo12, 82-84 (1936). · Zbl 0015.00701
[11] Kato, T.: Perturbation theory for linear opeators. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0148.12601
[12] Kelley, J. L.: General topology. New York: D. van Nostrand 1955. · Zbl 0066.16604
[13] Mazur, S., Ulam, S.: Sur les transformations isométriques d’espace vectoriels normés. C. R. Acad. Sci. Paris194, 946-948 (1932). · Zbl 0004.02103
[14] Miyadera, I.: Semi-groups of operators in Fréchet space and applications to partial differential equations. Tôhoku Math. J. (2)11, 162-183 (1959). · Zbl 0092.32105
[15] – Oharu, S.: Approximation of semi-groups of nonlinear operators. preprint. · Zbl 0207.45301
[16] Pitt, L.: Products of Markovian semi-groups of operators. Z. Warsch. verw. Geb.12, 241-254 (1969). · Zbl 0174.49004
[17] Sz.-Nagy, B.: On uniformly bounded linear transformations in Hilbert space. Acta Sci. Math. Szeged11, 152-157 (1947). · Zbl 0029.30501
[18] Trotter, H. F.: On the product of semi-groups of operators. Proc. Amer. Math. Soc.10, 545-551 (1959). · Zbl 0099.10401
[19] Yosida, K.: Functional analysis. Berlin-Göttingen-Heidelberg-New York: Springer 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.