Existence theorems for optimal control problems involving multiple integrals. (English) Zbl 0184.19404


control theory
Full Text: DOI


[1] Cesari, L., Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints, I, Trans. Am. Math. Soc., 124, 369-472 (1966) · Zbl 0145.12501
[2] Cesari, L., Existence theorems for multidimensional problems of optimal control, Differential Equations and Dynamical Systems, ((1967), Academic Press: Academic Press New York), 115-132 · Zbl 0186.48803
[3] Cesari, L., Existence theorems for multidimensional Lagrange problems, J. Optimization Theory Appl., 1, 87-172 (1967) · Zbl 0156.12503
[4] Cesasi, L.Ann. Scuola Norm. Sup. Pisa.; Cesasi, L.Ann. Scuola Norm. Sup. Pisa.
[5] Dunford, N.; Schwartz, J. T., Linear Operators (1958), Interscience Publishers: Interscience Publishers New York, part I · Zbl 0084.10402
[6] Klee, V.; Olech, C., Characterization of a class of convex sets, Math. Scand., 20, 290-296 (1967) · Zbl 0162.44104
[7] Kuratowski, K., Les functions semi-continues dans d’espace des ensembles fermes, Fund. Math., 18, 148-166 (1932) · Zbl 0004.20401
[8] Morrey, C. B., Multiple Integrals in the Calculus of Variations (1966), Springer-Verlag: Springer-Verlag New York · Zbl 0142.38701
[9] Olech, C., Existence theorems for optimal problems with vector valued cost functions, Trans. Am. Math. Soc., 136, 157-180 (1967) · Zbl 0179.14002
[10] Rudin, W., Real and Complex Analysis (1966), McGraw-Hill Book Company: McGraw-Hill Book Company New York · Zbl 0148.02904
[11] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishehenko, E. F., (Neustadt, L. W., The mathematical Theory of Optimal Processes (1962), Interscience Publishers: Interscience Publishers New York), trans. from Russian by K. N. Trirogoff · Zbl 0102.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.