Hochster, M. Prime ideal structure in commutative rings. (English) Zbl 0184.29401 Trans. Am. Math. Soc. 142, 43-60 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 29 ReviewsCited in 325 Documents Keywords:commutative algebra × Cite Format Result Cite Review PDF Full Text: DOI References: [1] N. Bourbaki, Algèbre commutative, Chapitre 2, Hermann, Paris, 1961. · Zbl 0108.04002 [2] Jean Dieudonné, Algebraic geometry, Department of Mathematics Lecture Notes, No. 1, University of Maryland, College Park, Md., 1962. · Zbl 0256.14001 [3] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0093.30001 [4] M. Hochster, Prime ideal structure in commutative rings, Thesis, Princeton Univ., Princeton, N. J., 1967. · Zbl 0184.29401 [5] -, Symbolic powers in Noetherian domains (to appear). · Zbl 0211.06701 [6] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808 [7] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604 [8] R. G. Montgomery, Spec A as a set with algebraic structure, Abstract 68T-458, Notices Amer. Math. Soc. 15 (1968), 637. [9] Pierre Mazet, Générateurs, relations et épimorphismes d’anneaux, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A309 – A311 (French). Norbert Roby, Sur les épimorphismes de la catégorie des anneaux, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A312 – A313 (French). Daniel Lazard, Épimorphismes plats d’anneaux, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A314 – A316 (French). Jean-Pierre Olivier, Anneaux absolument plats universels et épimorphismes d’anneaux, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A317 – A318 (French). Daniel Ferrand, Épimorphismes d’anneaux à source noethérienne et monomorphismes de schémas, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A319 – A321 (French). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.