×

zbMATH — the first resource for mathematics

Boundary value problems for some degenerate-elliptic operators. (English) Zbl 0185.19201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Agmon,Lectures on elliptic boundary value problems, Van Nostrand Studies 2 (1965). · Zbl 0142.37401
[2] De Giorgi, E., Sulla differenziabilità e analicità delle estremali degli integrali multipli regolari, Mem. Accad. Sc. Torino, 3, 3, 25-43 (1957) · Zbl 0084.31901
[3] Gagliardo, E., Proprietà di alcune funzioni in più variabili, Ricerche di matematica, VI, 102-137 (1958) · Zbl 0089.09401
[4] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relativa ad alcune classi di funzioni in n variabili, Rendiconti del Seminario dell’Università di Padova, 27, 284-304 (1957) · Zbl 0087.10902
[5] John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426 (1961) · Zbl 0102.04302
[6] Kružkov, S. N., Certain properties of solutions of elliptic equations, Soviet Matematics, 4, 686-695 (1963)
[7] J. L. Lions,Problèmes aux limites dans les equations aux dèrivèes partielles, Séminaire de Mathématique Supérieures, Univ. de Montréal, (1962).
[8] Littman, W.; Stampacchia, G.; Weinberger, H. F., Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Sup. di Pisa, 17, 45-79 (1967)
[9] Magenes, E.; Stampacchia, G., I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Sc. Norm. Sup. di Pisa, 12, 247-358 (1958) · Zbl 0082.09601
[10] Miranda, C., Alcune osservazioni sulla maggiorazione in L^vdelle soluzioni deboli e delle equazioni ellittiche del secondo ordine, Ann. di Matematica, 61, 151-170 (1963) · Zbl 0134.09102
[11] Morrey, C. B., Second order elliptic equations in seven al variables and Hölder continuity, Math. Z., 72, 146-164 (1952) · Zbl 0094.07802
[12] Moser, J., A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[13] Moser, J., On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math., 14, 577-591 (1961) · Zbl 0111.09302
[14] Nash, J., Continuity of solutions for parabolic and elliptic differential equations, Amer. J. Math., 80, 931-953 (1958)
[15] Serrin, J., Local behavior of quasi-linear equations, Acta Mathematica, 111, 247-302 (1964) · Zbl 0128.09101
[16] Stampacchia, G., Contributi alla regolarizazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche, Ann. Sc. Norm. Sup. di Pisa, 12, 223-245 (1958) · Zbl 0082.09701
[17] Stampacchia, G., Problemi al contorno ellittici, con dati discontinui dotati di soluzioni hölderiane, Ann. di Matematica Pura Appl., 51, 1-38 (1960) · Zbl 0204.42001
[18] Stampacchia, G., Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble, 15, 189-258 (1965) · Zbl 0151.15401
[19] –Regularisation des solutions de problèmes aux limites elliptiques à données discontinues, Int. Symp. Lin. Spaces, Jerusalem, (1960). · Zbl 0092.10401
[20] Stampacchia, G., Some limit cases of L, Comm. Pure Appl. Math., 16, 505-510 (1963) · Zbl 0147.09202
[21] –Equations elliptiques du second order à coefficients discontinues, Séminaire sur les equations aux dérivées partielles, Collège de France, 1963.
[22] Stampacchia, G., Formes bilinearies coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris, 258, 4413-4416 (1964) · Zbl 0124.06401
[23] –Equations elliptiques du second ordre à coefficients discontinues, Séminaire de Mathematiques Supérieures, Univ. de Montréal, (1965).
[24] –Second order elliptic equations and boundary value problems, Proc. of the Int. Congress of Mathematicians, Stockolm (1962), 405-413.
[25] – –Equazioni ellittiche che degenerano, Atti del Convegno sulle equazioni alle derivate parziali, Nervi, (1965), 90-96.
[26] Zygmund, A., On a theorem of Marcinkewicz concerning interpolation of operations, Journal de Mathématiques, 35, 223-248 (1956) · Zbl 0070.33701
[27] Trigonometrical Series, Cambridge (1959), Vol. I, II. · Zbl 0095.27501
[28] Baouendi, M. S., Sur une classe d’opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95, 45-45 (1967) · Zbl 0179.19501
[29] Morel, H., Introduction de poids dans l’étude de problèmes aux limithes, Ann. Inst. Fourier, 12, 299-414 (1962) · Zbl 0112.33903
[30] Nécas, J., Les methodes directes dans le théore des équations elliptiques (1967), Prague: Edit. Acad. Tchecoslovaque des Sciences, Prague
[31] Oleinik, O. A., Sur les équations du type elliptiques qui dégénérent à la frontiere, Doclady Akad Nank S.S.S.R., 87, 885-888 (1952)
[32] Oleinik, O. A., A problem of Fichera, Doklady Akad. Nauk S.S.S.R., 157, 1297-1300 (1964) · Zbl 0142.37103
[33] J. J. Kohn andL. Nirenberg,Non coercive boundary value problems, Comm. Pure Appl. Math. (18) (1965), 443-492. · Zbl 0125.33302
[34] Vishik, I. M., Problèmes aux limites pour les équations elliptiques dégénérant à la frontière, Mat. Sbornik, 35, 513-568 (1954)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.