×

On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from \(L^{p}(\mu)\) to \(L^{r}(\nu)\). (English) Zbl 0185.20303


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bade, W.G., Extensions of interpolation sets, (), To appear · Zbl 0214.37801
[2] Banach, S., Théorie des opérations linéaires, Monografje matematyczne, (1932), Warsaw · JFM 58.0420.01
[3] Bessaga, C.; Pelczynski, A., On bases and unconditional convergence of series in Banach spaces, Studia math., 17, 151-164, (1958) · Zbl 0084.09805
[4] Dunford, N.; Schwartz, J.T., Linear operators. part I: general theory, (1958), Interscience New York
[5] Gillman, L.; Jerison, M., Rings of continuous functions, (1960), D. van Nostrand Princeton, N. J · Zbl 0093.30001
[6] Grothendieck, A., Sur LES applications lineaires faiblement compactes d’espaces du type C(K), Canad. J. math., 5, 129-173, (1953) · Zbl 0050.10902
[7] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, bol. soc. matem. sao paulo, 8, 1-79, (1966)
[8] Halmos, P., Measure theory, (1950), D. van Nostrand New York · Zbl 0040.16802
[9] Kadec, M.I., On linear dimension of the spaces Lp, Uspehi mat. nauk., 13, 95-98, (1958), (Russian)
[10] Kadec, M.I.; Pelczynski, A., Bases, lacunary sequences, and complemented subspaces in the spaces Lp, Studia math., 21, 161-176, (1962) · Zbl 0102.32202
[11] Katetov, M.; Katetov, M., Correction to ‘on real-valued functions in topological spaces’, Fund. math., Fund. math., 40, 203-205, (1953) · Zbl 0053.12304
[12] {\scLindenstrauss, J.}, On a Theorem of Murray and Mackey. An. da Acad. Brasileira de Ciencias.
[13] Lindenstrauss, J., On some subspaces of l1 and c0, Bull. research council of Israel, 10F, 74-80, (1961)
[14] Lindenstrauss, J., On subspaces of Banach spaces without quasi-complements, Israel journal of math., 6, 36-38, (1968) · Zbl 0157.43702
[15] {\scLindenstrauss, J.}, Weakly compact sets—their topological properties and the Banach spaces they generate. Proc. of the Symposium of Infinite Dimensional Topology, L.S.U. To appear.
[16] Lindenstrauss, J.; Pelczynski, A., Absolutely summing operators in \(L\)_{p} spaces and their applications, Studia math., 29, 275-326, (1968) · Zbl 0183.40501
[17] Lusternik; Sobolev, Elements of functional analysis, (1961), Hindustan Publs. Corp Delhi, India · Zbl 0293.46001
[18] Mackey, G., Note on a theorem of murray, Bull. am. math. soc., 52, 322-325, (1946) · Zbl 0063.03692
[19] Murrary, F.J., Quasi-complements and closed projections in reflexive Banach spaces, Trans. am. math. soc., 58, 77-95, (1945) · Zbl 0063.04140
[20] Naimark, M.A., Normed rings, (1959), P. Noordhoff H. V. Groningen The Netherlands · Zbl 0089.10102
[21] Pelczynski, A., Projections in certain Banach spaces, Studia math., 19, 209-228, (1960) · Zbl 0104.08503
[22] Pelczynski, A.; Semadeni, Z., Spaces of continuous functions (III) (spaces \(C(Ω)\) for ω without perfect subsets), Studia math., 18, 211-222, (1959) · Zbl 0091.27803
[23] Pitt, H.R., A note on bilinear forms, J. lond. math. soc., 11, 174-180, (1936) · Zbl 0014.31201
[24] Reiter, H.J., Contributions to harmonic analysis VI, Ann. of math., 77, 552-562, (1963), (2) · Zbl 0118.11403
[25] Rosenthal, H.P., On quasi-complemented subspaces of Banach spaces, (), 361-364 · Zbl 0157.43701
[26] Rosenthal, H.P., On complemented and quasi-complemented subspaces of quotients of C(S) for Stonian S, (), 1165-1169 · Zbl 0162.17502
[27] Rosenthal, H.P., On totally incomparable Banach spaces, J. funct. anal., 4, 167-175, (1969) · Zbl 0184.15004
[28] Rudin, W., ()
[29] Rudin, W., Trigonometric series with gaps, J. math. mech., 9, 203-227, (1960) · Zbl 0091.05802
[30] Wells, Benjamin B., Uncomplemented subspaces of continuous functions and weak compactness of measures, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.