×

A variational method for functions of bounded boundary rotation. (English) Zbl 0185.32701


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. M. Goluzin, On a variational method in the theory of analytic functions, Amer. Math. Soc. Transl. (2) 18 (1961), 1 – 14. · Zbl 0102.06301
[2] W. K. Hayman, Coefficient problems for univalent functions and related function classes, J. London Math. Soc. 40 (1965), 385 – 406. · Zbl 0132.06001 · doi:10.1112/jlms/s1-40.1.385
[3] Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169 – 185 (1953). · Zbl 0048.31101
[4] W. E. Kirwan, A note on extremal problems for certain classes of analytic functions, Proc. Amer. Math. Soc. 17 (1966), 1028 – 1030. · Zbl 0158.07402
[5] Olli Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1952 (1952), no. 124, 14. · Zbl 0048.31601
[6] V. Paatero, Über die konforme Abbildungen von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A 33 (1931), No. 9. · Zbl 0005.25104
[7] Bernard Pinchuk, Extremal problems in the class of close-to-convex functions, Trans. Amer. Math. Soc. 129 (1967), 466 – 478. · Zbl 0185.32501
[8] Bernard Pinchuk, On starlike and convex functions of order \?, Duke Math. J. 35 (1968), 721 – 734. · Zbl 0167.36101
[9] M. Schiffer and O. Tammi, A method of variations for functions with bounded boundary rotation, J. Analyse Math. 17 (1966), 109 – 144. · Zbl 0152.07201 · doi:10.1007/BF02788654
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.