×

Measure theoretic geometry and elliptic variational problems. (English) Zbl 0185.35202


MSC:

49Qxx Manifolds and measure-geometric topics
49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control
28A75 Length, area, volume, other geometric measure theory
35J35 Variational methods for higher-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] William K. Allard, On boundary regularity for Plateau’s problem, Bull. Amer. Math. Soc. 75 (1969), 522 – 523. · Zbl 0183.11404
[2] Frederick Justin Almgren Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257 – 299. · Zbl 0118.18503 · doi:10.1016/0040-9383(62)90016-2
[3] F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277 – 292. · Zbl 0146.11905 · doi:10.2307/1970520
[4] F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321 – 391. · Zbl 0162.24703 · doi:10.2307/1970587
[5] John E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. 124 (1966), 480 – 517. · Zbl 0166.18103
[6] Jesse Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), no. 1, 263 – 321. · Zbl 0001.14102
[7] Ennio De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 79 – 85 (Italian). · Zbl 0168.09802
[8] Herbert Federer, The (\?,\?) rectifiable subsets of \?-space, Trans. Amer. Soc. 62 (1947), 114 – 192. · Zbl 0032.14902
[9] Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418 – 491. · Zbl 0089.38402
[10] Hebert Federer, Currents and area, Trans. Amer. Math. Soc. 98 (1961), 204 – 233. · Zbl 0187.31302
[11] Herbert Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43 – 67. · Zbl 0136.18204
[12] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[13] Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458 – 520. · Zbl 0187.31301 · doi:10.2307/1970227
[14] Wendell H. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc. 7 (1956), 1063 – 1074. · Zbl 0078.13804
[15] Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69 – 90. · Zbl 0107.31304 · doi:10.1007/BF02849427
[16] Wendell H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160 – 186. · Zbl 0136.03602
[17] E. Giusti and M. Miranda, Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rational Mech. Anal. 31 (1968/1969), 173 – 184 (Italian). · Zbl 0167.10703 · doi:10.1007/BF00282679
[18] Charles B. Morrey Jr., Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1967/1968), 649 – 670. · Zbl 0175.11901
[19] R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165 – 172. · Zbl 0119.09201
[20] E. R. Reifenberg, Solution of the Plateau Problem for \?-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1 – 92. · Zbl 0099.08503 · doi:10.1007/BF02547186
[21] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 1 – 14. · Zbl 0151.16701 · doi:10.2307/1970488
[22] E. R. Reifenberg, On the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 15 – 21. · Zbl 0151.16702 · doi:10.2307/1970489
[23] James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62 – 105. · Zbl 0181.49702 · doi:10.2307/1970556
[24] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502 · doi:10.1007/BF02566923
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.