×

The acoustic equation with an indefinite energy form and the Schrödinger equation. (English) Zbl 0186.16401

Der Inhalt dieser Arbeit entspricht genau einem Teil des Buches der Verff. über “Scattering Theory” (vgl. vorstehendes Referat Zbl 0186.16301).

MSC:

35Lxx Hyperbolic equations and hyperbolic systems
35J10 Schrödinger operator, Schrödinger equation
35P25 Scattering theory for PDEs

Citations:

Zbl 0186.16301
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Birman, M.Sh., Conditions for the existence of wave operators, Izv. akad. nauk. U.S.S.R., 27, 883-906, (1963) · Zbl 0183.14104
[2] Dolph, C.L.; McLeod, J.B.; Thoe, D., The analytic continuation to the unphysical sheet of the resolvent kernel and the scattering operator associated with the schrôdinger operator, J. math. anal. appl., 16, 311-332, (1966) · Zbl 0148.35904
[3] Fourès, Y.; Segal, I.E., Causality and analyticity, Trans. am. math. soc., 78, 385-405, (1955) · Zbl 0064.36805
[4] Kato, T., Wave operators and unitary equivalence, Pacific J. math., 15, 171-180, (1965) · Zbl 0125.34902
[5] Iohvidov, I.S.; Kreǐn, M.G.; Iohvidov, I.S.; Kreǐn, M.G.; Iohvidov, I.S.; Kreǐn, M.G.; Iohvidov, I.S.; Kreǐn, M.G., Spectral theory of operators in spaces with an indefinite metric. I and II, (), Am. math. soc. transl., ser 2, Am. math. soc. transl., ser 2, 34, 283-374, (1963) · Zbl 0184.16401
[6] Lax, P.D.; Phillips, R.S., Scattering theory, Bull. am. math. soc., 70, 130-142, (1964) · Zbl 0117.09104
[7] Lax, P.D.; Phillips, R.S., Analytic properties of the Schrödinger scattering matrix, (), 243-254
[8] Lax, P.D.; Phillips, R.S., Scattering theory, (1967), Academic Press New York · Zbl 0214.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.