×

Sur la représentation régulière d’un groupe localement compact connexe. (French) Zbl 0186.46304


References:

[1] L. AUSLANDER et C. C. MOORE , Unitary representations of solvable Lie groups (Mem. Amer. Math. Soc., n^\circ 62, 1966 ). MR 34 #7723 | Zbl 0204.14202 · Zbl 0204.14202
[2] N. BOURBAKI , Intégration vectorielle (Act. Sci. Ind., n^\circ 1281, Paris, Hermann, 1959 ). MR 23 #A2033 | Zbl 0115.04903 · Zbl 0115.04903
[3] N. BOURBAKI , Mesure de Haar (Act. Sci. Ind., n^\circ 1306, Paris, Hermann, 1963 ). MR 31 #3539 | Zbl 0156.03204 · Zbl 0156.03204
[4] N. BOURBAKI , Algèbres de Lie (Act. Sci. Ind., n^\circ 1285, Paris, Hermann, 1960 ). Zbl 0199.35203 · Zbl 0199.35203
[5] C. CHEVALLEY , Théorie des groupes de Lie , t. 2 (Act. Sci. Ind., n^\circ 1152, Paris, Hermann, 1951 ). Zbl 0054.01303 · Zbl 0054.01303
[6] C. CHEVALLEY , Théorie des groupes de Lie , t. 3 (Act. Sci. Ind., n^\circ 1226, Paris, Hermann, 1955 ). · Zbl 0066.01503
[7] J. DIXMIER , Sur les représentations unitaires des groupes de Lie algébriques (Ann. Inst. Fourier, t. 7, 1957 , p. 315-328). Numdam | MR 20 #5820 | Zbl 0080.32101 · Zbl 0080.32101 · doi:10.5802/aif.73
[8] J. DIXMIER , Représentations induites holomorphes des groupes résolubles algébriques (Bull. Soc. math. Fr., t. 94, 1966 , p. 181-206). Numdam | MR 34 #7724 | Zbl 0204.44101 · Zbl 0204.44101
[9] J. M. G. FELL , The dual spaces of C*-algebras (Trans. Amer. Math. Soc., t. 94, 1960 , p. 365-403). MR 26 #4201 | Zbl 0090.32803 · Zbl 0090.32803 · doi:10.2307/1993431
[10] J. M. G. FELL , Weak containment and induced representations of groups (Can. J. Math., vol. 14, 1962 , p. 237-268). MR 27 #242 | Zbl 0138.07301 · Zbl 0138.07301 · doi:10.4153/CJM-1962-016-6
[11] J. GLIMM , Locally compact transformation groups (Trans. Amer. Math. Soc., vol. 101, 1961 , p. 124-138). MR 25 #146 | Zbl 0119.10802 · Zbl 0119.10802 · doi:10.2307/1993415
[12] J. GLIMM , Families of induced representations (Pacific J. Math., vol. 12, 1962 , p. 885-911). Article | MR 26 #3819 | Zbl 0121.10303 · Zbl 0121.10303 · doi:10.2140/pjm.1962.12.885
[13] R. GODEMENT , Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires (J. Math. pures et appl., t. 30, 1951 , p. 1-110). MR 13,12a
[14] K. IWASAWA , On some types of topological groups (Ann. Math., vol. 50, 1949 , p. 507-558). MR 10,679a | Zbl 0034.01803 · Zbl 0034.01803 · doi:10.2307/1969548
[15] G. W. MACKEY , Induced representations of locally compact groups (Ann. Math., vol. 55, 1952 , p. 101-139). MR 13,434a | Zbl 0046.11601 · Zbl 0046.11601 · doi:10.2307/1969423
[16] G. W. MACKEY , Induced representations of locally compact groups, II, The Frobenius reciprocity theorem (Ann. Math., vol. 58, 1953 , p. 193-221). MR 15,101a | Zbl 0051.01901 · Zbl 0051.01901 · doi:10.2307/1969786
[17] G. W. MACKEY , Borel structure in groups and their duals (Trans. Amer. Math. Soc., vol. 85, 1957 , p. 134-165). MR 19,752b | Zbl 0082.11201 · Zbl 0082.11201 · doi:10.2307/1992966
[18] G. W. MACKEY , Unitary representations of group extensions (Acta Math., vol. 99, 1958 , p. 265-311). MR 20 #4789 | Zbl 0082.11301 · Zbl 0082.11301 · doi:10.1007/BF02392428
[19] D. MONTGOMERY et L. ZIPPIN , Topological transformation groups (Intersc. tracts in pure and appl. math., Interscience Publishers, New-York, 1955 ). MR 17,383b | Zbl 0068.01904 · Zbl 0068.01904
[20] L. PUKANSZKY , Sur la représentation régulière des groupes de Lie résolubles connexes, I et II (C. R. Acad. Sc., t. 268, série A, 1969 , p. 1077-1079 et 1172-1173 et article à paraître). MR 39 #7445a | Zbl 0186.46303 · Zbl 0186.46303
[21] L. PUKANSZKY , Characters of algebraic solvable groups (J. Functional Analysis, vol. 3, 1969 , p. 435-494). MR 40 #1539 | Zbl 0186.20004 · Zbl 0186.20004 · doi:10.1016/0022-1236(69)90034-2
[22] I. E. SEGAL , An extension of Plancherel’s formula to separable unimodular groups (Ann. Math., vol. 52, 1950 , p. 272-292). MR 12,157f | Zbl 0041.36312 · Zbl 0041.36312 · doi:10.2307/1969470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.