zbMATH — the first resource for mathematics

Formulas to represent functions by their derivatives. (English) Zbl 0187.03102

Full Text: DOI EuDML
[1] Adams, R., Aronszajn, N., Smith, K. T.: Theory of Bessel potentials. II. Ann de l’Inst. Fourier XVII (2) 1-13 (1967). · Zbl 0185.19703
[2] Agmon, S.: Lectures on elliptic boundary value problems. Princeton N.J.: Van Nostrand 1965. · Zbl 0142.37401
[3] Aronszajn, N.: On coercive integro-differential quadratic forms. Conference on Partial Differential Equations. University of Kansas, Report No. 14, 94-106 (1954).
[4] Calderón, A. P.: Lebesgue spaces of differentiable functions. Proc. Symp. on Pure Math., Partial Differential Equations. 33-49 (1961). · Zbl 0195.41103
[5] ?? Zygmund, A.: On the existence of certain singular integrals. Acta Math.88, 85-139 (1952). · Zbl 0047.10201
[6] Gobert, J.: Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Roy. Sci. Liege31, 182-191 (1962). · Zbl 0112.38902
[7] John, F.: Plane waves and spherical means applied to partial differential equations. New York: Interscience 1955. · Zbl 0067.32101
[8] Smith, K. T.: Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc.6, 368-370 (1961). · Zbl 0103.07602
[9] Sobolev, S. L.: Some applications of functional analysis in mathematical physics. Leningrad Izdat. Leningrad Gos. Univ. (1950). · Zbl 0041.52307
[10] Strichartz, R. S.: Multipliers on fractional Sobolev spaces. Jour. Math. and Mech.16, 9, 1031-1060 (1967). · Zbl 0145.38301
[11] Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, 63-89 (1934). · Zbl 0008.24902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.