×

Sur certains ensembles exceptionnels en analyse de Fourier. (French) Zbl 0187.07202


PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] J. F. MELA, Sur LES ensembles d’interpolation de C. ryll-nardzewski et de S. Hartmann, Studia Math. 29 (1968), 167-193. · Zbl 0155.18802
[2] S. HARTMANN et C. RYLL-NARDZAWSKI, Almost periodic extensions of functions, Coll. Math, 12 (1964), 23-29. · Zbl 0145.32101
[3] W. RUDIN, Fourier analysis on groups, Interscience tracts, (1962). · Zbl 0107.09603
[4] J. MYCIELSKI, On a problem of interpolation by periodic functions, Coll. Math, 8, 1961, 95-97. · Zbl 0102.05302
[5] J. S. LIPINSKI, Sur un problème de marczeski concernant LES fonctions périodiques, Bulletin de l’Académie Polonaise des Sciences, Série des Sci. Math. astr. et phys., 8, (1960), 695-697. · Zbl 0134.04404
[6] C. RYLL-NARDZEWSKI, Remark on interpolation by periodic functions, Bulletin de l’Académie Polonaise des Sciences, Série des Sci. Math. astr. et phys., 11, (1963), 363-366. · Zbl 0126.08402
[7] E. STRZELECKI, Some theorems of interpolation by periodic functions, Colloquium Math., 12 (1964), p. 239-248. · Zbl 0133.02003
[8] H. HELSON et J. P. KAHANE, A Fourier method in Diophantine problems, J. anal. Math., Iraël, 15 (1965), 245-262. · Zbl 0135.10804
[9] A. ZYGMUND, Trigonometric series. Cambridge University press. · Zbl 0085.05601
[10] J. P. KAHANE et R. SALEM, Ensembles parfaits et séries trigonométriques, Hermann, Paris. · Zbl 0856.42001
[11] S. HARTMAN, J. P. KAHANE et C. RYLL-NARDZEWSKI, Sur LES ensembles d’interpolation, Bull. Acad. Polon. Sci., 13 (1965), 625-626. · Zbl 0143.10404
[12] J. P. KAHANE, Ensembles de ryll-nardzewski et ensembles de helson, Colloquium Math., 15 (1965). · Zbl 0144.34202
[13] N. DUNFORD et J. SCHWARTZ, Linear operators. · Zbl 0128.34803
[14] H. WEYL, Veber die gleichverteilung von zahlen mod eins, Math. Ann., 77 (1916). · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.