On the stability of nonlinear operator differential equations, and applications. (English) Zbl 0187.08801

Full Text: DOI


[1] Browder, F. E., Nonlinear equations of evolution. Ann. of Math. 80, 485–523 (1964). · Zbl 0127.33602 · doi:10.2307/1970660
[2] Browder, F. E., Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc. 73, 867–874 (1967). · Zbl 0176.45301 · doi:10.1090/S0002-9904-1967-11820-2
[3] Buis, G. R., Lyapunov Stability for Partial Differential Equations. Part I, NASA CR-1100, 1968.
[4] Dunford, N., & J. Schwartz, Linear Operators. Vol. 1. New York: Interscience 1963. · Zbl 0128.34803
[5] Kato, T., Nonlinear semi-groups and evolutions equations. J. Math. Soc. Japan 19, 508–520 (1967). · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[6] Kōmura, Y., Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19, 493–507 (1967). · Zbl 0163.38302 · doi:10.2969/jmsj/01940493
[7] Lumer, G., & R. S. Phillips, Dissipative operators in a Banach space. Pacific J. Math. 11, 679–698 (1961). · Zbl 0101.09503 · doi:10.2140/pjm.1961.11.679
[8] Minty, G. J., Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962). · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2
[9] Pao, C. V., The Existence and Stability of Solutions to Nonlinear Operator Differential Equations. Preceding in this issue. · Zbl 0187.08702
[10] Vogt, W. G., M. M. Eisen, & G. R. Buis, Contraction groups and equivalent norms. Nagoya Math. J. 34 (to appear); also Lyapunov Stability for Partial Differential Equations. Part II, NASA CR-1100, 1968.
[11] Yosida, K., Functional Analysis. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0152.32102
[12] Zubov, V. I., Methods of A. M.Lyabunov and their Application. The Netherlands: P. Noordhoff Ltd. 1964.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.